DOI QR코드

DOI QR Code

COHOMOLOGY AND TRIVIAL GOTTLIEB GROUPS

  • Lee, Kee-Young (Department of Information and Mathematics Korea University)
  • Published : 2006.01.01

Abstract

This paper observes that the induced homomorphisms on cohomology groups by a cyclic map are trivial. For a CW-complex X, we use the fact to obtain some conditions of X so that the n-th Gottlieb group $G_n(X)$ is trivial for an even positive integer n. As corollaries, for any positive integer m, we obtain $G_{2m}(S^{2m})\;=\;0\;and\;G_2(CP^m)\;=\;0$ which are due to D. H. Gottlieb and G. Lang respectively, where $S^{2m}$ is the 2m- dimensional sphere and $CP^m$ is the complex projective m-space. Moreover, we show that $G_4(HP^m)\;=\;0\;and\;G_8(II)\;=\;0,\;where\;HP^m$ is the quaternionic projective m-space for any positive integer m and II is the Cayley projective space.

Keywords

References

  1. D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-755 https://doi.org/10.2307/2373349
  2. D. H. Gottlieb, Witness, transgressions, and the evaluation map, Indiana Univ. Math.J. 24 (1975) no. 9, 825-836 https://doi.org/10.1512/iumj.1975.24.24065
  3. S. -T. Hu, Homotopy theorey, Academic Press, New York, (1989)
  4. G. E. Lang, Evaluation subgroups of factor spaces, Paciffic. J. Math. 42 (1972), 701-709 https://doi.org/10.2140/pjm.1972.42.701
  5. G. Lupton and S. Smith, Rationalized evaluation subgroups of a map and the rationalized G-sequence, Preprint
  6. A. T. Lundell, Concise tables of James numbers and some homotopy classical Lie groups and associated homogeneous spaces, Algebraic topology(1990), 250-272 Lecture Notes in Math. 1509, Springer, Berlin, (1992) https://doi.org/10.1007/BFb0087515
  7. K. Y. Lee and M. H. Woo, The G-sequence and the !-homology of a CW-pair, Topology Appl. 52 (1993), no. 3, 221-236 https://doi.org/10.1016/0166-8641(93)90104-L
  8. K. Y. Lee and M. H. Woo, Cyclic morphisms in the category of pairs and generalized G-sequences, J. Math. Kyoto Univ. 38 (1998), no. 2, 271-285 https://doi.org/10.1215/kjm/1250518118
  9. K. Y. Lee and M. H. Woo, Cocyclic morphisms and dual G-sequences, Topology Appl. 116 (2001), no. 1, 123-136 https://doi.org/10.1016/S0166-8641(00)00081-X
  10. M. Mimura, Homotopy Theory of Lie groups, Handbook of Algebraic Topology, Elsevier Science B. V. (1995), 951-991
  11. J. Oprea, Gottlieb groups, group actions, fixed points and rational homotopy, Lecture Notes Series, Seoul national Univ. Research Inc. Math. Global Analysis Research center, Seoul 29 (1995)
  12. J. Siegel, G-spaces, W-spaces and H-spaces, Paciffic J. Math. 31 (1970), 209-214
  13. S. B. Smith, Rational evaluation subgroups, Math. Zeit. 221 (1996), no. 3, 387- 400 https://doi.org/10.1007/PL00004252
  14. E. Spanier, Algebraic Topology, McGraw-Hill Book Company, New York (1981)