References
- D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-755 https://doi.org/10.2307/2373349
- D. H. Gottlieb, Witness, transgressions, and the evaluation map, Indiana Univ. Math.J. 24 (1975) no. 9, 825-836 https://doi.org/10.1512/iumj.1975.24.24065
- S. -T. Hu, Homotopy theorey, Academic Press, New York, (1989)
- G. E. Lang, Evaluation subgroups of factor spaces, Paciffic. J. Math. 42 (1972), 701-709 https://doi.org/10.2140/pjm.1972.42.701
- G. Lupton and S. Smith, Rationalized evaluation subgroups of a map and the rationalized G-sequence, Preprint
- A. T. Lundell, Concise tables of James numbers and some homotopy classical Lie groups and associated homogeneous spaces, Algebraic topology(1990), 250-272 Lecture Notes in Math. 1509, Springer, Berlin, (1992) https://doi.org/10.1007/BFb0087515
- K. Y. Lee and M. H. Woo, The G-sequence and the !-homology of a CW-pair, Topology Appl. 52 (1993), no. 3, 221-236 https://doi.org/10.1016/0166-8641(93)90104-L
- K. Y. Lee and M. H. Woo, Cyclic morphisms in the category of pairs and generalized G-sequences, J. Math. Kyoto Univ. 38 (1998), no. 2, 271-285 https://doi.org/10.1215/kjm/1250518118
- K. Y. Lee and M. H. Woo, Cocyclic morphisms and dual G-sequences, Topology Appl. 116 (2001), no. 1, 123-136 https://doi.org/10.1016/S0166-8641(00)00081-X
- M. Mimura, Homotopy Theory of Lie groups, Handbook of Algebraic Topology, Elsevier Science B. V. (1995), 951-991
- J. Oprea, Gottlieb groups, group actions, fixed points and rational homotopy, Lecture Notes Series, Seoul national Univ. Research Inc. Math. Global Analysis Research center, Seoul 29 (1995)
- J. Siegel, G-spaces, W-spaces and H-spaces, Paciffic J. Math. 31 (1970), 209-214
- S. B. Smith, Rational evaluation subgroups, Math. Zeit. 221 (1996), no. 3, 387- 400 https://doi.org/10.1007/PL00004252
- E. Spanier, Algebraic Topology, McGraw-Hill Book Company, New York (1981)