생체 삽입형 유연한 마이크로 전극의 제작 및 평가

Fabrication and Evaluation of the Flexible and Implantable Micro Electrode

  • 백주열 (단국대 의대 의공학연구소) ;
  • 권구한 (단국대 의대 의공학과) ;
  • 이상운 (단국대 의대 의공학여구소) ;
  • 이기암 (단국대 전자물리학과) ;
  • 이상훈 (단국대 의대 의공학과)
  • 발행 : 2006.02.01

초록

In this paper, we fabricated and evaluated polydimethylsiloxane(PDMS)-based flexible and implantable micro electrodes. The electrode patterning was carried out with the photolithography and chemical etching process after e-beam evaporation of 100 ATi and 1000 A Au. The PDMS substrate was treated by oxygen plasma using reactive ion etching(RIE) system to improve the adhesiveness of PDMS and metal layers. The minimum line width of fabricated micro electrode was 20 $\mu$m. After finished patterning, we did packaging with PDMS and then brought up the electrode's part about 40 $\mu$m with gold electroplating. The Hank's balanced salt solution(HBSS) test was carried out for 6 month for endurance of fabricated micro electrode. We carried out in-vivo test for the evaluation of biocompatibility by implanting electrodes under the ICR mouse skin for 42 days.

키워드

참고문헌

  1. Kovacs G T A, Storment C W, Halks-Miller M, Belczynski C R Jr, Santina C C D, Lewis E R and Maluf N I, 'Silicon-substrate microelectrode arrays for parallel recording of neural activity in peripheral and cranial nerves', IEEE Trans. Biomed Eng., Vol. 4, pp. 567-577, 1994 https://doi.org/10.1109/10.293244
  2. Campbell P K, Jones K E, Huber R J, Horch K W and Norman R A, 'A silicon-based, three-dimensional neural interface: manufacturing process for an intracortical electrode array', IEEE Trans. Biomed Eng., Vol. 38, pp. 758-768, 1991 https://doi.org/10.1109/10.83588
  3. Ensell G, Banks D J, Ewins D J, Balachandran W and Richards P R, 'Silicon-based microelectrodes for neurophysiology fabricated using a gold metallization/nitride passivation system', J. Microelectromech. Syst., Vol. 5, pp. 117-121, 1996 https://doi.org/10.1109/84.506199
  4. Stieglitz T, Beutel H and Meyer J-U, 'A flexible, light-weight multichannel sieve electrode with integrated cables for interfacing regenerating peripheral nerves', Sens. Actuators A, Vol. 60, pp. 240-243, 1997 https://doi.org/10.1016/S0924-4247(97)01494-5
  5. Takeuchi S and Shimoyama I, 'A three-dimensional ?shape memory alloy microelectrode with clipping structure for insect neural recording', J. Microelectromech. Syst., Vol. 9, pp. 24-31, 2000 https://doi.org/10.1109/84.825773
  6. Patrick J. Rousche, David S.Pellinen, David P. Pivin, Justin C. Williams, Rio J. Vetter and Daryl R. Kipke, 'Flexible Polyimide-Based Intracortical Electrode Arrays with Bioactive Capability', IEEE Trans. Biomed. Eng., Vol. 48, No. 3, pp. 361-371, 2001 https://doi.org/10.1109/10.914800
  7. O'Brien D P, Nichols T R, and Allen M G, 'Flexible microelectrode arrays with integrated insertion devices', MEMS'01, pp. 216-219, 2002 https://doi.org/10.1109/MEMSYS.2001.906517
  8. Shoji T, Takafumi S, Kunihiko M and Hiroyuki F, '3D flexible multichannel neural probe array', J. Micromech. Microeng., Vol. 14, pp. 104-107, 2004 https://doi.org/10.1088/0960-1317/14/1/014
  9. Y. Matsubara, Y. Murakami, M. Kobayashi, Y. Morita and E. Tamiya, 'Application of on-chip cell cultures for the detection of allergic response', Biosens. Bioelectron., vol. 19, pp. 714-747, 2004 https://doi.org/10.1016/j.bios.2003.08.001
  10. 이형규, 장선일, 윤의식, '유연한 고무재질로 구현된 모듈구조의 확장가능한 촉각센서', 제7회 한국 MEMS 학술대회 초록집, pp. 77-80, Jeju, April 7-9, 2005
  11. S. P. Lacour, J. Jones, Z. Suo, and S. Wagner, 'Design and Performance of Thin Metal Film Interconnects for Skin-Like Electronic Circuits', IEEE Electron Device Lett., Vol. 25, pp. 179-181, April 2004 https://doi.org/10.1109/LED.2004.825190
  12. G. Y. Ahn, S. I. Park, I. B. Shim, Y. S. Cho and C. S. Kim, 'Magnetoresistance and surface properties with deposition condition for La-Sr-Mn-O thin films', Phys. Stat. Sol. B, vol. 241, no. 7, pp. 1561-1564, 2004 https://doi.org/10.1002/pssb.200304673