다중 전송률 지원 무선랜에서 효율적인 패킷 전송 기법

Effective Packet Transmission Scheme in Multirate WLAN

  • 김남기 (삼성전자 정보통신총괄 통신연구소)
  • 발행 : 2006.02.01

초록

동적으로 변화하는 채널 상태에 대응하고자 IEEE 802.11 기반 무선랜은 서로 다른 변조 방식 및 부호화 기법을 도입해 복수 개의 전송률을 지원한다. 그러나 한 네트워크 안에서 높은 전송률과 낮은 전송률의 공존은 전체시스템의 성능을 저하시키는 결과를 초래한다. 이러한 성능 이상(performance abnormality)를 제거하고 시스템 성능을 향상시키기 위해 본 논문에서는 RAT(Rate-Adapted Transmission) 기법을 제안한다. RAT 기법은 무선 채널을 단말의 채널 점유 시간에 기반하여 분배한다. 그리고 한 단말 안에서도 전송률 기반 큐 관리를 통해 패킷을 효율적으로 전송한다. 따라서 RAT 기법은 단말 간 전송률 경쟁 이득(inter-rate contention gain)뿐만 아니라 단말 내 전송률 경쟁 이득(intra-rate contention gain)까지 얻을 수 있다.

To cope with channel variation, wireless networks such as IEEE 802.11 WLAN provide multiple transmission rates by employing different channel modulation and coding schemes. However, the coexistence of different transmission rates degrades the total system performance of the network. In order to eliminate this performance abnormality and improve protocol capacity, we propose a new Packet transmission algorithm, the RAT(Rate-Adapted Transmission) scheme. The RAT scheme distributes the wireless channel fairly based on the channel occupancy time. Moreover, it efficiently transmits packets even in a single station using rate-based queue management. Therefore, the RAT scheme obtains not only the inter-rate contention gain among stations but also the intra-rate contention gain among connections in a single station.

키워드

참고문헌

  1. A. Kamerman and L. Monteban, 'WaveLAN-II: A High-Performance Wireless LAN for the Unlicensed Band,' Bell Labs Technical Journal, pp. 118-133, Summer 1997
  2. Holland, N. Vaidya and P. Bahl, 'A RateAdaptive MAC Protocol for Multi-Hop Wireless Networks,' ACM MOBICOM'01, pp. 236-251, Jul. 2001
  3. B. Sadeghi, V. Kanodia, A. Sabharwal and E. Knightly, 'Opportunistic Media Access for Multirate Ad Hoc Networks,' ACM MOBICOM'02, Sept. 2002
  4. J. P. Pavon and S. Choi, 'Link Adaptation Strategy for IEEE 802.11 WLAN via Received Signal Strength Measurement,' IEEE ICC'03, May 2003
  5. H. Kim and J. C. Hou, 'Improving Protocol Capacity with Model-based Frame Scheduling in IEEE 802.11-operated WLANs,' ACM MOBICOM'03, Sept. 2003
  6. I. Haratcherev and K. Langendoen, 'Hybrid Rate Control for IEEE 802.11,' ACM MOBIWAC'04, Oct. 2004
  7. M. Lacage, M. H. Manshaei and T. Turletti, 'IEEE 802.11 Rate Adaptation: A Practical Approach,' ACM MSWiM'04, Oct. 2004
  8. W. Wang, S. C. Liew and J. Y. B. Lee, 'ABRC: An End-to-End Rate Adaptation Scheme for Multimedia Streaming over Wireless LAN,' IEEE WCNC'04, 2004
  9. IEEE Std 802.11, 'Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) specifications,' ANSI/IEEE 802.11 Std, Aug. 1999. IEEE Std 802.11, 'Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) specifications,' ANSI/IEEE 802.11 Std, Aug. 1999
  10. IEEE Std 802.11b-1999, 'Part 11: Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) specifications: Highspeed Physical Layer Extension in the 2.4GHz Band,' Supplement to ANSI/IEEE Std 802.11, Sep. 1999
  11. IEEE Std 802.11a-1999, 'Part 11: Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) specifications: Highspeed Physical Layer Extension in the 5GHz Band,' Supplement to ANSI/IEEE Std 802. 11, Sep. 1999
  12. IEEE Std 802.11g-2003, 'Part 11: Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) specifications: Further Higher Data Rate Extension in the 2.4GHz Band,' Amendment to IEEE 802.11 Std, Jun. 2003
  13. G. Bianchi, 'Performance Analysis of the IEEE 802.11 Distributed Coordination Function,' IEEE JSAC, Vol. 18, No. 3, Mar. 2000
  14. C. H. Foh and M. Zukerman, 'Performance Analysis of the IEEE 802.11 MAC Protocol,' European Wireless 2002, Feb. 2002
  15. M. Heusse, F. Rousseau, G. Berger-Sabbatel, A. Duda, 'Performance Anomaly of 802.11b,' IEEE INFOCOM'03, Mar. 2003
  16. http://www.isi.edu/nsnam/ns/