CARA: IEEE 802.11 무선랜에서 충돌을 인지한 적응적 전송속도 조절기법

CARA: Collision-Aware Rate Adaptation for IEEE 802.11 WLANs

  • 김종석 (서울대학교 전기공학부 멀티미디어 무선통신망 연구실) ;
  • 김성관 (서울대학교 전기공학부 멀티미디어 무선통신망 연구실) ;
  • 최성현 (서울대학교 전기공학부 멀티미디어 무선통신망 연구실)
  • 발행 : 2006.02.01

초록

IEEE 802.11 무선랜(Wireless LAN)은 다수의 전송속도(transmission rate)를 지원하고 있으며, 채널 상태에 따라 전송속도를 적응적으로 조절함으로써 시스템 성능을 최대화할 수 있다. 지금까지 많은 종류의 전송속도 조절기법들이 제안되어 왔으나 최근까지 대부분의 상용제품에 구현된 기법은 ARF(Automatic Rate Fallback)라는 간단한 open-loop 전송속도 조절기법이다. 이러한 open-loop 전송속도 조절기법의 가장 큰 문제점은 데이터의 충돌현상(collision effect)을 고려하지 않는다는 것이며, 이로 인해 충돌에 의한 다수의 전송실패가 발생할 경우 시스템 성능이 급격히 낮아진다는 문제점이 있다. 이 논문에서는 CARA(Collision-Aware Rate Adaptation)라는 새로운 전송속도 조절기법을 제안하고 있다. CARA는 송신 단말이 채널에러에 의해 발생한 데이터 전송실패를 충돌에 의해 발생한 것과 구분할 수 있도록 적응적으로 CCA(Clear Channel Assessment)와 RTS/CTS(Request-to-Send/Clear-to-Send) 전송을 사용하는 기법이다. 따라서 기존의 open-loop 전송속도 조절기법과 비교할 때, CARA는 보다 정확하게 현재 채널상태에 적합한 전송속도를 선택할 수 있게 된다. 시뮬레이션을 통한 많은 실험결과들로부터 CARA는 채널상태에 관계없이 다른 기법들보다 월등히 높은 성능을 나타낸다는 것을 알 수 있다.

Today's IEEE 802.11 WLANs(Wireless LANs) provide multiple transmission rates so that different rates can be exploited in an adaptive manner depending on the underlying channel condition in order to maximize the system performance. Many rate adaptation schemes have been proposed so far while most(if not all) of the commercial devices implement a simple open-loop rate adaptation scheme(i.e., without feedback from the receiver), called ARF(Automatic Rate Fallback) due to its simplicity. A key problem with such open-loop rate adaptation schemes is that they do not consider the collision effect, and hence, malfunction severely when many transmission failures are due to collisions. In this paper, we propose a novel rate-adaptation scheme, called CARA(Collision-Aware Rate Adaptation). The key idea of CARA is that the transmitter station combines adaptively the Request-to-Send/Clear-to-Send(RTS/CTS) exchange with the Clear Channel Assessment(CCA) functionality to differentiate frame collisions from frame transmission failures cause by channel errors. Therefore, compared with other open-loop rate adaptation schemes, CATA is more likely to make the correct rate adaptation decisions. Through extensive simulation runs, we evaluate our proposed scheme to show that our scheme yields significantly higher throughput performance than the existing schemes in both static and time-varying fading channel environments.

키워드

참고문헌

  1. IEEE 802.11, Part 11: Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) specifications, IEEE Std 802.11-1999, Aug. 1999
  2. IEEE 802.11b, Part 11: Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) specifications: Higher-speed Physical Layer Extension in the 2.4 GHz Band, Supplement to IEEE 802.11 Standard, Sep. 1999
  3. IEEE 802.11a, Part 11: Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) specifications: High-speed Physical Layer in the 5 GHz Band, Supplement to IEEE 802.11 Standard, Sep. 1999
  4. IEEE 802.11g, Part 11: Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) specifications: Further Higher Data Rate Extension in the 2.4 GHz Band, Supplement to IEEE 802.11 Standard, Jun. 2003
  5. IEEE 802.11e/D13.0, Part 11: Wireless LAN Medium Access Control(MAC) and Physical layer(PHY) specifications: Medium Access Control(MAC) Enhancements for Quality of Service(QoS), Draft Supplement to IEEE 802.11 Standard, Draft 13.0, Jan. 2005
  6. IEEE 802.11k/D2.0, Part 11: Wireless LAN Medium Access Control(MAC) and Physical layer(PHY) specifications: Radio Resource Measurement, Draft Supplement to IEEE 802.11 Standard, Draft 2.0, Feb. 2005
  7. G. Bianchi, 'Performance Analysis of the IEEE 802.11 Distributed Coordination Function,' IEEE Journal of Selected Area in Communications, vol. 18, no. 3, March 2000
  8. M. Carroll, T. A. Wysocki, 'Fading Characteristics for Indoor Wireless Channels at 5GHz Unlicensed Bands,' in Proc. Sympo TIC'03, pp 102-105, Bratislava, Slovakia, Oct. 2003
  9. Sunghyun Choi and Javier del Prado, '802.11g CP: A Solution for IEEE 802.11g and 802.11b Inter-Working,' in Proc. IEEE VTC'03-Spring, Jeju, Korea, April 2003
  10. Sunwoong Choi, Kihong Park, and Chongkwon Kim, 'On the Performance Characteristics of WLANs: Revisited,' in Proc. ACM SIGMETRICS '05, Jun. 2005
  11. P. Chevillat, J. Jelitto, A. Noll Barreto, and H. L. Truong, 'A Dynamic Link Adaptation Algorithm for IEEE 802.11a Wireless LANs,' in Proc. IEEE ICC'03, Anchorage, AK, pp. 1141-1145, May 2003
  12. Javier del Prado Pavon and Sunghyun Choi, 'Link Adaptation Strategy for IEEE 802.11 WLAN via Received Signal Strength Measurement,' in Proc. IEEE ICC'03, Anchorage, AK, May 2003
  13. Gavin Holland, Nitin Vaidya, and Paramvir Bahl, 'A Rate-Adaptive MAC Protocol for Multi-Hop Wireless Networks,' in Proc. ACM MobiCom '01, Rome, Italy, Jul. 2001
  14. M. Heusse, F. Rousseu, G. Berger-Sabbatel, and A. Duda, 'Performance Anomaly of 802.11b,' in Proc. IEEE INFOCOM '03, vol. 2, pp. 836-843, Mar. 2003
  15. Ad Kamennan and Leo Monteban, 'WaveLAN-II: a high-performance Wireless LAN for the Unlicensed Band,' Bell Labs Technical Journal, vol.2, no.3, pp.118-133, Aug. 1997 https://doi.org/10.1002/bltj.2069
  16. Ratish J. Punnoose, Pavel V. Nikitin, and Daniel D. Stancil, 'Efficient Simulation of Ricean Fading within a Packet Simulator,' in Proc. IEEE VTC '00-Fall, Sept. 2000
  17. T. S. Rappaport, Wireless Communications: Principle and Practice, Englewood Cliffs, NJ: Prentice-Hall, 1996
  18. B. Sadeghi, V. Kanodia, A. Sabharwal and E. Knightly, 'Opportunistic Media Access for Multirate Ad Hoc Networks,' in Proc. ACM Mobi-Com '02, Atlanta, Georgia, Jul. 2002
  19. Daji Qiao and Sunghyun Choi, 'Goodput Enhancement of IEEE 802.11a Wireless LAN via Link Adaptation,' in Proc. IEEE ICC '01, Jun. 2001, pp. 1995-2000
  20. Daji Qiao, Sunghyun Choi, and Kang G. Shin, 'Goodput Analysis and Link Adaptation for IEEE 802.11a Wireless LANs,' IEEE Trans. On Mobile Computing(TMC), vol. 1, no. 4, pp. 278-292, Oct.-Dec. 2002 https://doi.org/10.1109/TMC.2002.1175541
  21. Daji Qiao and Sunghyun Choi, 'Fast-Responsive Link Adaptation for IEEE 802.11 WLANs,' in Proc. IEEE ICC '05, Seoul, Korea, May 2005
  22. Intersil, 'HFA3861B; Direct Sequence Spread Spectrum Baseband Processor,' January 2000
  23. 'The Network Simulator-ns-2,' http://www.isi.edu/nsnam/ns/, online link
  24. MADWIFI, http://sourceforge.net/projects/madwifi/, online link. Wireless LAN via Link Adaptation,' in Proc. IEEE ICC'01, Jun. 2001, pp. 1995-2000