한국콘텐츠학회논문지 (The Journal of the Korea Contents Association)
- 제6권2호
- /
- Pages.34-43
- /
- 2006
- /
- 1598-4877(pISSN)
- /
- 2508-6723(eISSN)
가변적 비디오 트랙을 위한 임계형 신경망 모델
Threshold Neural Network Model for VBR Video Trace
초록
본 논문은 가변적 비디오 트랙을 위한 모델링 방법을 제시한다. 가변적인 비디오 트랙은 간헐적인 버스트 및 긴 구간 상관관계의 특성을 갖는다고 잘 알려져 있다. 이러한 데이터를 분석하기 위해서, 에러 임계값으로부터 구한 보조적인 선형 구조를 갖는 신경망 구조 모델 구축을 한다. 모델링 결과 테스트를 위해서, 흔돈 비선형 함수와 지수 랜덤 노이즈를 결합한 가변적 비디오 트랙을 발생하였다. 발생된 데이터를 모델링한 결과, 전통적인 신경망 모델에 비해서 제시된 모델이 보다 정확한 모델링 결과를 보여 주었다. 그러나 또한 제시된 모델에 ARは을 결합한 결과가 제시된 모델 단독인 경우에 비해서 더욱 발생된 데이터의 통계적 특성에 근접함을 발견했다.
This paper shows modeling methods for VBR video trace. It is well known that VBR video trace is characterized as longterm correlated and highly intermittent burst data. To analyze this, we attempt to model it using neural network with auxiliary linear structures derived from residual threshold. For testing purpose, we generate VBR video trace from chaotic nonlinear function combined with the geometric random noise. The modeling result of the generated data shows that the attempted method represents more accurately than the traditional neural network. However, we also found that combining hRU to the attempted modeling method can yield a closer agreement to statistical features of the generated data than the attempted modeling method alone.
키워드