Threshold Neural Network Model for VBR Video Trace
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This paper shows modeling methods for VBR video trace. It is well known that VBR video
trace is characterized as longterm correlated and highly intermittent burst data. To analyze

this, we attempt to model it using neural network with auxiliary linear structures derived from
residual threshold. For testing purpose, we generate VBR video trace from chaotic nonlinear
function combined with the geometric random noise. The modeling result of the generated data
shows that the attempted method represents more accurately than the traditional neural
network. However, we also found that combining ARMA to the attempted modeling method can
yield a closer agreement to statistical features of the generated data than the attempted
modeling method alone.
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I. INTRODUCTION variable and correlated time-series such as moving
picture expert group (MPEG) coded variable bit rate

Neural networks have been applied to time-series  (VBR) video data. The most popular neural networks
modeling and prediction problemsfi]. In this paper @ e a multi-layered architecture trained using the error
new neural network model is developed for highly  phack-propagation (BP) algorithm. Neural networks
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trained using the BP algorithm have been successfully
applied to problems in optimization, control, pattemn
recognition, modeling and learning(2].

One of the limitations of feed-forward (FF) neural
networks with BP training is that sudden changes in
the output value are often not modeled accurately.
Furthermore, the performance of BP trained FF neural
networks will depend on its structure. The optimal
structure for a given problem is generally not known
[2113].

The conventional neural model has been examined
for use in solving the problems of multimedia
communication such as call admission control and link
capacity allocation problems in varous networksl4].
Link capacity estimator using the neural model has
been shown to outperform the Erlang based link
capacity estimator. The conventional neural model has
also been examined for use in the policing function in
asynchronous transmission mode (ATM) networks[5].
The mean and peak bit-rates in ATM traffic were
approximated using the model. These two parameters
were used to predict possible violations of the
negotiated bit-rates. The pi-sigma neural network has
been used for the prediction of bandwidth allocation for
real-timeVBR video over ATM networks(6]. The
results were compared to those obtained using a
recursive least square prediction method. In the
simulation, the pi-sigma network was used to
dynamically predict bandwidth requirements for full
motion video traffic. The video traffic used in the
simulation was filtered to smooth the bit-rate
variations caused by scene changes. Two minutes of
the filtered video data was used to train the pi-sigma
neural network. It was shown that the on-line
observation of the input traffic stream using the
pi-sigma neural network allowed the prediction of near
future bandwidth demands in the ATM network.

In this paper a new VBR video trace modeling

method using the FF neural network will be developed.
VBR video trace is modeled using the FF neural model
with BP training. We willalso develop auxiliary neural
networks to model the sudden amplitude changes in
the trace. These auxiliary models have linear function
instead of the sigmoid functions that will be switched
by the prescribed amplitude ranges. This model is
termed the threshold neural network (TNN) model.
The TNN cannot easily process all the elements of
stochastic video trace data. Therefore a procedure for
modeling a residual data using the autoregressive
moving average (ARMA) process will be examined.

The organization of this paper is as follows. In
section II general features of the conventional neural
model are reviewed. Section I discusses the procedure
of the TNN modeling approach. The analysis and
synthesis steps are examined in this section. In section
IV verification of the new method is discussed. Finally
conclusions are presented in section V.

II. CONVENTIONAL NEURAL NETWORK
MODELS

Many types of neural network and training
algorithms have been developed [1-3]. The method
used to train the neural network is based on error
minimization using a finite set of input and output
samples. To estimate the input-output relation in the
multi-layered neural network, the input data is
multiplied by weight vectors and the result is
forwarded to the output layer through the hidden
layers. In the training phase, the estimates are
compared to actual data and the error signals are used
to modify the weight vectors in each layer. This
procedure is continued for each member of the training
set until a desired error threshold is reached. Therefore
the neural network yields the estimates of transfer
functions between the given input and the oﬁtput
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time-series. We will use sigmoid functions for the
nonlinear transfer functions in the hidden layer.

1

Vi = T expah,) )

where "’ represents the output of the j-th node, a is
the slobe parameter, and "/ is a weighted sum of the
inputs at j-th node. The sigmoid function is
differentiable and assumes a continuous range of
values between 0 andl.

1. Multi-layered Neural Network

The multi-layered neural network consists of the
hidden, input and output layers. A recurrent structure
[2)(3] is implemented by feeding the output back to the
input nodes. We will only consider the FF structure
here.

Figure 1. Feed—forward neural network:

structure

In this subsection, calculation of the estimates in the
FF neural network is reviewed. A baseline neural
model in this paper will consist of a hidden layer with
nodes having the sigmoid functions, and an outputand
input layer. In [Figure 1], the neural network has p
input nodes in the input layer P, q hidden nodes in the
hidden layer Q and one output node in the output layer
L. The p—lagged elements of x(n) are used as the input

data and y(n) is the estimate of x(n). The weight

matrix elements are shown as “ifor the

input-to-hidden layer and "W forthe hidden-to-output
layer. The error is obtained in the output layer by
comparing x(n) and y(n). ,

Let us denote the vector %r as the input data to the
neural network. This vector can be comprised of
time-delayed elements of the time-series
Xn=D.x(n=2),x(1-p) and will be used to predict the
outcome x(n). The FF calculations in the multi-layer
neural network are as follows. The intermittent output
at the hidden layer is written as

ﬁQ = WQPf p )

- where Q denotes the hidden layer and % is a vector
of the weighted sum of the input data The subscript

P is used to denote the input layer and Zris the input

vector having p elements. "er denotes the weight
matrix for the input-to-hidden layer path. In the
hidden layer each node uses a sigmoid transfer
function to weight the outcome vector %9 . Hence the
output of the hidden nodes are transformed by the
nonlinear function given in Eq.(1).

The estimates are calculated in the output node as

2, 7Moo NG)

where L denotes the output layer, 2¢ is a vector
having the estimates obtained at each output node,

Wiois the weight matrix between the output and

hidden layers, and % is a vector having elements of
Y obtained by Eq. (1). o

In the learning phase, pairs of input-output vectors
are presented to the neural network. For each
presentation of the input-otitput pair the error signals
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are calculated. The error signals are used to modify the
weight matrix W using a total squared error
minimization procedure. The process of modification of
the Wwill be briefly discussed in the following section.
After the weights have converged to their equilibrium
values, estimates are computed using the W and new
input data values.

Ideally, the residual series derived from the trained
neural network is an uncorrelated sequence. In such a
case the neural network can be regarded as a nonlinear
whitening filter [2). The nonlinear transfer functions in
the neural network embed the temporal correlations in
its structure [2]. However it is found that a Gaussian
distributed residual series is often not easily achieved.
For highly varying input data, it has been observed
that the residual probability density function (pdf) is
thatof a Gaussian Delta function {7). The Gaussian
Delta pdf has a large probability near zero and almost

zero elsewhere,

2. Conventional Learning Algorithm

The term learning or training in this paper will be
used to describe the optimization process of the weight
vectors. In this section, we briefly review the BP
algorithm One can refer to[2}[3] for more detailed
descriptions of the algorithrm.

In supervised leaming, the errors between the actual
and estimated time-series are used to optimize the
weight vectors. The actualtime-series data is given by

£; denotes the output layer with nodes indexed 1 to!.

el =[x(n+7) =y, x(n+T—1)~ y5(n),
o M+ T=K) = Y () x(n+ T = 1) =y, ()] (4)

where-is a vector of comprised of the errors,
7(r20)is the prediction interval, ¥n+7-%)is actual
input data, and Y+ is the estimate obtained from the

FF neural network. The error € at each iteration is a
random vector having the joint pdf P&r22) [2], where

Xp is the input vector as

xp =[n = Dx(n = 2) -+~ x(n = p)] )

The actual dataZ:is? steps ahead for the input data
ip,

An approximation of the unknown transfer
functionwhich describes the input-output relation is
obtained using a gradient descent procedure in the
error space. The objective is to minimize the total
squared error €, where it is defined as

e=ges ®)

The ¢ is the emor vector having a total of !

elements. Each element is obtained at the output node

k and time n. Partial differentiation of the¢ with

respect to the weight matrix yields the gradients of the

weight elements. Hence the weight elements are
iteratively modified as

Wy @¢+)= Wy~ )7Awkj [(3] (7)

where t is the iteration index, *# is weight element in
the hidden to output layer,” is the leaming constant,
and 25 is the gradient. The t will be omitted in the
equations that follow.

Since we consider linear sums in the output layer,

Ay ) withj=12,q is derived as

Awy :i

Oy ®
Applying the chain rule to Eq.(8) we obtain the
solution as
de Iy (n) _

Awyy = ——————=-2¢, (MV;

Iy (m) dwy 9
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where »«(Mis the k-th lagged element of 2« thus

g
Ye(m=Lwyv;
Jj=1

(10)
The functione (™ is the k-th element of the error

vector, and Y is the output of the j-th hidden node.

In the hidden layer the sigmoid transfer function is
used at each node and the errors in the output layer are
passed to the hidden layer. The gradients of weights in
the hidden-to-~input layer is obtained as

o (11
Applying the chain rnule to Eq.(11), we have

A o2 D) dv; op;

T3y ) dv; oP; dwy, (12)

where Fiis a weighted sum of the input data. The ©s
is written as
»
Py= ’_Z=le,-x(n —i)
Simplifying (12) yields
Awj ==28,0,x(n 1) a3)
with

!
d;= Ele,‘ (Mwy

and
v =v;(0-v))

where x (n-i) (i=1,2, , p) represents the input data
at i~th node in the input layer.

When the amplitudes of input data change smoothly
and the time-series is correlated, performance of the
FF based neural network with BP training is quite
reliable. For highly varying the traces, preprocessing
the input data using a smoothing filter can usually
improve the neural network performance [6].

lil. THRESHOLD NEURAL NETWORKS

The variance of the VBR video data (input data)
affects the performance of the neural network
model Large
xundergoes rapid changes in amplitude. These events
can be separately modeled by adding auxiliary models
to the baseline model. To this end we will construct
two additional output models.

The error signal is used to determine the threshold
amplitudes for the VBR video. In training phase, the
error signals greater than the prescribed threshold
amplitudes can be used to train additional linear
models. This scheme involves deMng the
transition amplitude and modeling the VBR video in
the newly defined amplitude region The structure of
the TNN model is given in [Figure 2]. In the figure,
two additional models are added to the input layer of
the baseline model. Each is comprised of the weight
vectors and output nodes. One drawback of the error
threshold scheme is that the error values are only
detected after one step behind at each observation.

approximation errors arise  when

structure

The VBR video m(_)deling procedure based on the
TNN model has two steps. In the analysis step all
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parameters in the TNN model and ARMA process are
estimated from the sampled data. The ARMA process
is used to model the residual time-series generated by
the TNN model. In the synthesis step a time-series is
generated using the TNN model and ARMA process.
[Figure 3] illustrates these steps.Each procedure will
be discussed in the following sections.
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Figure 3. TNN model construction and

synthesis steps with ARMA
process

(a) input data analysis and
(b) input data synthesis step

1. Analysis Step
VBR video trace point x(n) is estimated using the

baseline model in terms of the input vectorZr. The
delay 7 will be set equal to 0. The video trace x is
scaled such that its values are between 0 to 1 by

applying "'=% ma . Thel*lmx is the largest value in
x. The sampled input data is used to train the neural
network using the BP algorithm. When the total
squared error reaches a stable point, auxiliary linear
models are trained using prescribed threshold values.
The threshold amplitude® is determined from the
residual time-series of the baseline model. The
selection criteria is based on the degree of correlation
in the error series.

Once the baseline model is stabled, the local error e
is tabulated. By finding e(n) which is greater then
threshold value @, an auxiliary model yielding Yo ®
is trained on the input data. Hence we may write it as

Yy =) x, +6,

(14)
where ¥?is the weight vector between input nodes

and an additional output node yielding Y™ | and is
a bias constant. The error of this sub-network is
calculated as & ™ =*M =Y Calculation of the
gradients in terms of the error in the sub-network
provides that the weight vector ®# is modified to
minimize the total squared error as such case of the
baseline model. A similar procedure is followed when
the e(n) is less than-2 . In this case, the auxiliary
model for yielding >o™is trained The estimate is
Y@=z, +6, (15)

Whére wp is the Wéight Vectof between input nodes
and another sub-output node vielding Y& @ ’and biis
a bias constant. The error in this case is obtained as
e () =x(n) =y (n)

After training the auxiliary models, the TNN uses
the fixed values of the connection weights to calculate
an estimate of Y. Hence

computed concurrently. The y(n) is output from the
baseline model when k=1 in Eq.(3)..

(1) ¥y (1), Yy (W) are

$= (16)

MIN[(y(n), e(n = 1)), (¥, (n)s €, (n = 1)), (y 5 (n), €, (n = 1))]

where the MINT] operation takes the output value

among y(n), > and Y™ that yield the minimum

€ITor.
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Since the error at time nis not known, the one-lag
behind the error term is used in Eq.(16). This may
degrade the overall performance of the TNN model.
The residual series of the generalization phase is
obtained as

1 (n) = x(n) = 5(n) a7n

where 7 (Mis the residual time-series of the TNN
process. This 7 is processed using the linear
ARMA model discussed in time series analysis text
elsewhere [8]. Hence the % yields

u(ny=r,(n) - fn,»r,(n -+ %bl«u(n -N
i=l =1

(18)

where u (n)is the time-series generated by the
independent random noise process. If u(n) is Gaussian
white noise, the sum of the TNN and the additional
residual linear process will accurately represent the
VBR video trace.

2. Synthesis Step

Using the estimated model, synthesis of the
time-series (" can be carried out. It is a rather simple
process because we only need 309 and () values

which were obtained in the previous section.

()= y(m) + 1, (n)

(19)
where ™ can be obtained using ARMA(5.8) process
given in Eq.(18). ARMA solution is omitted in this

paper. Interested readers refer [8][9]. The ¥® is the
estimates from the TNNmodel. In reality the Eq.(19)
includes many parameters and functions.

IV. TNN MODEL FOR VIDEO TRACE

To generate VBR video traces, we need to generate
intermittent bursts [10]. The following nonlinear

difference equation is used to generate intermittent

bursts.
2(ny=B+ yn-1)+ Ly(n-1)° ifx(n-1)< D
xm)y=(x(n-1)-Dy/(1-D) iDL y(n—-1<1

where L=(1—ﬂ—D)/DZandﬂ:m*,b:m, and we

obtain the following Eq. as

c(ny=dy(n) (20)
where ®=15. The trace c(n) of Eq.(20) is shown in

{Figure 4].

l-l

¥ R . e 800

() g

Figure 4: VBR video trace from EQ.(20)

The nonlinear difference equation Eq.(20) will be
used in this section to test the modeling procedures
discussed in the last section. Now, we need to generate
VBR video trace. Superposed on the generated samples
from Eq.(20) is random noise drawn from a geometric
pdf. The amplitude at time nsatisfies the pdf as

Ps)=y'd-7)

for integral values of s2land 7<!, The parameter
r=038is selected to generate a random VBR video
trace having a mean equal to 5 and varianceto 20. The

video trace is the sum of the output of the nonlinear
difference equation and a stochastic time-series as

x(n)=c(n) + s(n)

21
where c(n) is given in Eq.(20) and s(n) is a
geometrically distributed random variable.
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Using the VBR videotrace from Eq.(21), we test
TNN modeling procedure. First, we need to determine
the baseline architecture. The number of input nodes p
and hidden nodes q are free-parameters. To estimate
these parameters we proceed as follows. Let Mbe equal
to the number of disjoint regions sparmed by x(n). The
nonlinear intermittent function Eq.(20) is comprised of
22 quantized levels. Following [85], the relation
between M, p and q is given by

M(p,q)=im
i=0\ I

where if p=5 and q=3, the value of M is equal to 26.
Therefore, p=5 and q=3are chosen for the baseline
architecture. .

The VBR video trace x(n) is scaled by a scale factor
equal to 70. In analysis step the TNN model is trained
using the sampled 2000 points. Using the stabled
model, ¥ is estimated from 6000 points of trace data
x(n) which are not include in the time-series points
used in the training. The residual series’ (™ is
obtained using Eq.(17).

The best model for the residual series
found as the ARMA(11,0) model which is equal to
AR(11) model. The residual series u(n) was obtained

and its mean and variance were found to equal 0.001

7. (n) was

and 3lrespectively. The residual of the combined
system was revealed as Gaussian white noise.
Therefore we can conclude that the TNN with
ARMA(11,0) process approximately represents VBR
video trace x(n).

The *is generated using ¥ and % for the
TNN and ARMAC(11,0) process in the synthesis step.
For comparison purpose, the synthesized series was
also constructed using the FF neural network and the
TNN model. The estimated output of these three

models are denoted as “sr() | Fmw(m apnd € M

[Table 1] shows statistics for the un-scaled ¥ , ¥ |

¥y and e . The statistics are matched
reasonably well in the case of ¥ . As clearly shown
in table, *sr(" estimates the mean level, However the
variance is underestimated. This indicates that the
time variation in *( is not captured by the FF neural
network model with BP training. The ¥mw (™ shows a
better agreement than the <er( bt the varance is
still low. The maximum (max.) and minimum (min.)
values of the time-series are also shown in the table.

Table 1

Statistical results for each model

e

Zgp(n) 8.06 4.65 15.37 3.96
Xy () 8.32 12.11 33.31 1.20
x(n) 9.15 30.72 39.42 0.01
- Actual J ,’
. TNN+ARMA e
20 . TNN .//‘;( : .
r'

o ke o » 2
MODELS

Figure 5 Q-Q Plot comparison for each model

The Q-Q plot for each model is shown in [Figure 5.
In [Figure 5] the strict line shows actual model, (",
The TNN+ARMA, TNN, and BP represent X
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T and *sr() respectively. The *zr( deviates
from the actual mode, *® . The ¥ follows the actual

*(M reasonably compared to the other models. In
conclusion, the FF neural network with BP training is
not a reliable modeling paradigm for the stochastic
trace modeled in this chapter. The TNN with ARMA
process outperforms the FF neural network with BP
training in modeling the VBR video x.

V. CONCULSION

The conventional neural network model is not
adequate to model VBR video trace possessing sudden
changes in amplitude. If changes occur at random
intervals in time theestimates of the FF neural network
with BP training wander about the near mean level of
the trace.

We have developed additional sub-network
structures based on the residuals obtained in the
training phase of the FF neural network. This was
required to increase the accuracy of the model. Once
the values of the weights have been stabled, no further
minimization in the total squared error of the
conventional neural model was observed. By
developing the auxiliary models for the values of x(n)
which are outside of the prescribed amplitude range
ta  the error was reduced.

"The residual series of the TNN model was analyzed.
It was found that using the ARMA process to model
the residual series one could further remove the linear
correlations in the residualseries. Synthesis of the
series using the TNN and ARMA process yielded a
close agreement to statistics of the generated VBR
video trace.

With these results, we can conclude that VBR video
trace cannot be easily modeled using “ traditional
stationary probabilistic methods, This is due to the

sudden changes and burst characteristics inherent to
VBR video traces.
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