카제인포스포펩티드의 수준별 섭취가 난소절제 흰쥐의 골대사에 미치는 영향

Effect of Dietary Caseinphosphopeptide Levels on Bone Metabolism in Ovariectomized Rats

  • Yang Daum (Department of Food and Nutrition, Kookmin University) ;
  • Lee Jin-Woo (Department of Dentistry, Dankook University) ;
  • Park Hong Joo (Rural Resources Development Institute) ;
  • Kim Sun Hee (Department of Food and Nutrition, Kookmin University) ;
  • Chang Moon-Jeong (Department of Food and Nutrition, Kookmin University)
  • 발행 : 2006.01.01

초록

The effect of the level of casein phosphopeptide (CPP) on mineral (Ca and P) bioavailabilties and bone biomarker of aged ovariectomized (OVX) Sprague-Dawley rats were studied as a model for postmenopausal bone loss. Forty five Spargue dawley rats, 220-230 g of body weight were fed a control diet (AIN 93M) or containing different level of CPP diet for 7 weeks: $0\%$ (sham control; SC, OVX control; OC), $1\%$ (OVX low CPP diet: OL), $2\%$ (OVX medium CPP diet; OM), $3\%$ (OVX high CPP diet; OH) Ca absorption was unaffected by increasing CPP content from 0 to $3\%$. Urinary Ca excretion was increased by OVX, and decreased by CPP significantly (p < 0.05) with no evident doserelationship. The urinary P excretion was increased by CPP intake in OVX rats. The fecal excretion of P given CPP decreased in OVX with dose dependent manner. Ca and P contents of femur significantly increased by adding 2 or $3\%$ of CPP when compared with OC group and OL group (p < 0.05). There were no significant differences in serum alkaline phosphatase activity and c-terminal telopeptide excretion in experimental groups. Although ovariectomy induced the increase in urinary c-terminal telopeptide excretion, 2 or $3\%$ of CPP in the diet decreased urinary c-terminal telopetide excretion significantly. These finding suggest the usefulness of CPP in the prevention of postmenopausal bone loss by decreasing urinary Ca excretion and bone resorption. Over 2 percent of CPP in the diet was effective to prevent postmenopausal bone loss.

키워드

참고문헌

  1. Lindsay R. Sex steroids in the pathogenesis and prevention of osteoporosis, in: Riggs B, Melton LI (eds.), Osteoporosis: Etiology, Diagnosis and Management, Raven Press, New York, 1988
  2. WHO/FAO Expert Consultation diet nutrition and the prevention of chronic diseases. WHO Technical Report Series, pp.916, 2003
  3. Prentice A. Is nutrition important in osteoporosis? Proc Nutr Soc 56: 357-367, 1997
  4. Albright F, Smith PH, Richardson D. Postmenopausal osteoporosis its clinical features. JAMA 116: 2465-2474, 1941 https://doi.org/10.1001/jama.1941.02820220007002
  5. Bilezikian JP. Estrogens and postmenopausal osteoporosis: was Albright right after all? J Bone Miner Res 13: 774-776, 1998 https://doi.org/10.1359/jbmr.1998.13.5.774
  6. Weaver CM. The growing years and prevention of osteoporosis in later life. Proc Nutr Soc 59: 303-306,2000
  7. Weaver CM, Teegarden D, Lyle RM, McCabe GP, McCabe LD, Proulx W, Kern M, Sedlock D, Anderson DD, Hillberry BM, Peacock M, Johnston CC. Impact of exercise on bone health and contraindication of oral contraceptive use in young women. Med Sci Sports Exerc 33: 873-880, 2001 https://doi.org/10.1097/00005768-200106000-00004
  8. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Johnson KC, Howard BV, Kotchem JM, Ockene J. Writing Group for the Women's Health Initiative Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results from the Women' Health Initiative randomized controlled trial. JAMA 288: 321-333, 2002 https://doi.org/10.1001/jama.288.3.321
  9. Allen LH. Calcium bioavailability and absorption: a review. Am J Clin Nutr 35: 783-808, 1982 https://doi.org/10.1093/ajcn/35.4.783
  10. Meisel H. Biochemical properties of bioactive peptides derived from milk proteins: Potential nutraceuticals for food and pharmaceutical applications. Livest Prod Sci 50: 125-138, 1997 https://doi.org/10.1016/S0301-6226(97)00083-3
  11. Meisel H, Frister H. Chemical characterization of bioactive peptides from in vivo digest of casein. J Dairy Res 56: 343-349, 1989 https://doi.org/10.1017/S0022029900028788
  12. Shah NP. Effects of milk-derived bioactives: an overview. Br J Nutr 84: S3-S10, 2000
  13. Meisel H, Frister H. Chemical characterization of a caseinophosphopeptide isolated from in vivo digests of a casein diet. Biol Chem Hoppe Seyler 369: 1275-1279, 1988 https://doi.org/10.1515/bchm3.1988.369.2.1275
  14. Kasai T, Iwasaki R, Tanaka M, Kiriyama S. Caseinphosphopeptides (CPP) in feces and contents in digestive tract of rats fed casein and CPP preparations. Biosci Biotechnol Biochem 59 (1): 26-30, 1995 https://doi.org/10.1271/bbb.59.26
  15. Berrocal R, Chanton S, Juillerat MA, Pavillard B, Scherz JC, Jost R. Tryptic phosphopeptides from whole casein II. Physicochemical properties related to the solubilization of calcium. J Dairy Res 56: 335-341, 1989 https://doi.org/10.1017/S0022029900028776
  16. Sato R, Shindo M, Gunshin H, Noguchi T, Naito H. Characterization of phosphopeptide derived from bovine ${\beta}$-casein: an inhibitor to intra-intestinal precipitation of calcium phosphate. Biochem Biophys Acta 1077: 413-415, 1991
  17. Sato R, Noguchi T, Naito H. Casein phosphopeptide (CPP) enhance calcium absorption from ligated segment of rat small intestine. J Nutr Sci Vitam 32: 67-76, 1986 https://doi.org/10.3177/jnsv.32.67
  18. Mykkanen HM, Wasserman RH. Enhanced absorption of calcium by casein phosphopeptide in rachitic and normal chikcs. J Nutr 110:2141-2148, 1980 https://doi.org/10.1093/jn/110.11.2141
  19. Lee YS, Noguchi T, Naitio H. Intestinal absorption of calcium in rats given diets containing casein or amino acid mixture: the role of casein phosphopeptides. Br J Nutr 49: 67-76, 1983 https://doi.org/10.1079/BJN19830012
  20. Lee YS, Noguchi T, Naito H. Phosphopeptides and soluble calcium in the small intestine of rats given a casein diet. Br J Nutr 43: 457-67, 1980 https://doi.org/10.1079/BJN19800113
  21. Ferraretto A, Gravaghi C, Fiorilli A, Tettamanti G. Casein-derived bioactive phosphopeptides: role of phosphorylation and primary structure in promoting calcium uptake by HT-29 tumor cells. FEBS Lett 551: 92-98, 2003 https://doi.org/10.1016/S0014-5793(03)00741-5
  22. Hansen M, Sandstrom B, Lonnerdal B. The effect of casein phosphopeptides on zinc and calcium absorption from high phytate infant diets assessed in rat pups and Caco-2 cells. Pediatr Res 40: 547-52, 1996
  23. Scholz-Ahrens KE, Kopra N and Barth C.A. Effect of casein phosphopeptides on utilization of calcium in minipigs and vitamin-D-deficient rats. Z Ernahrungswiss 29: 295-298, 1990 https://doi.org/10.1007/BF02023086
  24. Li Y, Tome D, Deesjeuz JF. Indirect effect of casein phosphopeptide on calcium absorption in rat ileum in vitro. Reprod Nutr Dev 29: 227-233, 1989 https://doi.org/10.1051/rnd:19890210
  25. Yuan YV, Kitts DD. Confirmation of calcium absorption and femoral utilization in spontaneously hypertensive rats fed casein phosphopeptide supplemented diets. Nutr Res 11: 1257-1272, 1991 https://doi.org/10.1016/S0271-5317(05)80545-7
  26. Narva M, Karkkainnen M, Poussa T, Lamberg-allardt C, Korpela R. Caseinphosphopeptides in milk and fermented milk do not affect calcium metabolim acutely in postmenopausa women. J Am Coll Nutr 22: 88-93, 2003 https://doi.org/10.1080/07315724.2003.10719280
  27. Pasquali R, Casimirri F, Labate AM, Tortelli O, Pascal G, Anconetani B, Flamia R, Capelli M, Barbbara L. Body weight, fat distribution and menopausal status in women. Int J Obes Relat Metab Disord 18: 614-621, 1994
  28. Kalu DN, Lin CC, Salerno E, Hollis BW, Echon R, Ray M. Skeletal response of ovariectomized rats to low and high doses of 17${\beta}$-estradiol. Bone Miner 14: 175-187, 1991 https://doi.org/10.1016/0169-6009(91)90021-Q
  29. Erba D, Ciappellano S, Testolin G. Effect of the ratio of casein phosphopeptides to calcium (w/w) on passive calcium transport in the distal small intestine of rats. Nutr 18: 743-746, 2002 https://doi.org/10.1016/S0899-9007(02)00829-8
  30. Bennett T, Desmond A, Harringon M, McDonagh D, FitzGerld R, Flynn A, Cashman KD. The effect of high intakes of casein and casein phosphopeptide on calcium absorption in the rat. Br J Nutr 83: 673-680, 2000 https://doi.org/10.1017/S0007114500000854
  31. Saito Y, Lee YS, Kimura S. Minimum effective dose of casein phophopeptides (CPP) for enhancement of calcium absorption in growing rats. Int J Vit Nutr Res 68: 335-340, 1998
  32. Heaney RP, Saito Y, Orimo H. Effect of casein phosphopeptides on absorbability of co-ingested calcium in normal postmenopausal women. J Bone Min Metabol 12: 77-81, 1994 https://doi.org/10.1007/BF02383413
  33. Sakhaee K, Nicar MJ, Class K, Pak CY. Postmenopausal osteoporosis as a manifestation of renal hypercalciuria with secondary hyperparathyroidism. J Clin Endocrinol Metab 61: 368-373, 1985 https://doi.org/10.1210/jcem-61-2-368
  34. Nordin BE, Need AG, Morris HA, Horowitz M, Robertson WG. Evidence for a renal calcium leak in postmenopausal women. J Clin Endocrinol Metab 72: 401-407, 1991 https://doi.org/10.1210/jcem-72-2-401
  35. Pointillart A, Gueguen L. Absence of effect of the incorporation of a milk phosphopeptide on the utilization of calcium and phosphorus in young pig. Repro Nutr Dev 29: 477-486, 1989 https://doi.org/10.1051/rnd:19890409
  36. Tsuchita H, Goto T, Shimizu T, Yonehara Y, Kuwata T. Dietary casein phophopeptides prevent bone loss in aged ovariectomized rats. J Nutr 126: 86-93, 1996 https://doi.org/10.1093/jn/126.1.86
  37. Lee HJ, Lee HO. Calcium metabolism of menopausal women. Bulletin Home Culture 10: 145-169, 1997
  38. Wronski TJ, Cintron M, Dann LM. Temporal relationship between bone loss and increased bone turnover in ovariectomized rats. Calcif Tissue Int 43: 179-183, 1988 https://doi.org/10.1007/BF02571317
  39. Kalu DK, Liu CC, Hardin R, Hollis BW. The aged rat model of ovarian hormone deficiency bone loss. Endocrinology 124: 7-16, 1989 https://doi.org/10.1210/endo-124-1-7
  40. Tsuchita H, Suzuki T, Kuwata T. The effect of casein phosphopeptides on calcium absorption from calcium-fortified milk in growing rats. Br J Nutr 85: 5-10, 2001 https://doi.org/10.1079/BJN2000206
  41. Wronski TJ, Walsh CC, lgnaszewski LA. Histologic evidence for osteopenia and increased bone turnover in ovariectomized rats. Bone 7: 119-123, 1986 https://doi.org/10.1016/8756-3282(86)90683-6
  42. Watkins BA, Reinwald S, Li Y, Seifert MF. Protective actions of soy isoflavones and n-3 PUFA on bone mass in ovariectomized rats. J Nutr Biochem 16: 479- 88. 2005 https://doi.org/10.1016/j.jnutbio.2005.01.019
  43. Garnero P, Gineyts E, Riou JP, Delmas PD. Assessment of bone resorption with a new marker of collagen degradation in patients with metaolic bone disease. J Clin Endocrinol Metab 79: 780- 785, 1994 https://doi.org/10.1210/jc.79.3.780
  44. Guerrero R, Diaz Martin MA, Diaz Diego EM, Disla T, Rapado A, de la Piedra C. New biochemical markers of bone resorption derived from collagen breakdown in the study of postmenopausal osteoporosis. Osteoporos Int 6: 297-302, 1996