A Comparison between EFIU and HEIU Schemes in ADI-FDTD Simulations

ADI-FDTD 해석에서의 EFIU와 HFIU 계산 방법 비교 연구

  • Ju Sae-Hoon (Electronics and Telecommunications Research Institute) ;
  • Lee Kyung-Hoon (Electronics and Telecommunications Research Institute) ;
  • Hwang In-Ho (Electronics and Telecommunications Research Institute) ;
  • Kim Hyeong-Dong (Department of Electrical and Computer, Engineering, Hanyang University)
  • 주세훈 (한국전자통신연구원 부설 국가보안기술연구소) ;
  • 이경훈 (한국전자통신연구원 부설 국가보안기술연구소) ;
  • 황인호 (한국전자통신연구원 부설 국가보안기술연구소) ;
  • 김형동 (한양대학교 전자전기공학부)
  • Published : 2006.01.01

Abstract

In this paper, updating schemes for the alternating-direction implicit finite-difference time-domain method(ADI-FDTD) are studied, which method has the potential to considerably reduce the number of time iterations especially in case where the fine spatial lattice relative to the wavelength is used to resolve fine geometrical features. In numerical simulations for microwave structure using ADI-FDTD, time marching scheme comprises of two sub-iterations. Two different updating equation sets for ADI-FDTD simulations are presented. In order to discuss the characteristics of those schemes especially in view of applying boundary conditions, we solved two complementary 2-D problems.

본 논문에서는 관심 주파수의 파장에 비하여 매우 섬세한 구조의 해석에 있어서 기존의 FDTD보다 효율적인 해석이 가능한 ADI-FDTD의 차분방정식 계산 방법에 대하여 연구하였다. 반복 구간에서 계산되는 서로 다른 계산 방법을 유도하고 두 개의 상보적인 2차원 문제를 해석하여 경계 조건의 적용 관점에서 그 특성을 논하였다.

Keywords

References

  1. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Norwood, MA: Artech House, 2005
  2. T. Namiki, 'A new FDTD algorithm based on alternating direction implicit method', IEEE Trans. Microwave Theory and Tech., vol. 47, pp. 2003-2007, Oct. 1999 https://doi.org/10.1109/22.795075
  3. F. Zheng, Z. Chen, and J. Zhang, 'Toward the development of a three-dimensional unconditionally stable finite difference time-domain method', IEEE Trans. Microwave Theory and Tech., vol. 48, pp. 1550-1558, Sep. 2000 https://doi.org/10.1109/22.869007
  4. F. Zheng, Z. Chen, 'Numerical dispersion analysis of the unconditionally stable 3-D ADI-FDTD method', IEEE Microwave Theory and Tech., vol. 49, pp. 1006-1009, May 2001 https://doi.org/10.1109/22.920165
  5. S. W. Staker, C. L. Holloway, A. U. Bhobe, and M. Piket-May, 'Alternating-direction implicit(ADI) formulation of the finite-difference time-domain(FDTD) method: algorithm and material dispersion implementation, ternating-direction implicit(ADI) formulation of the finite-difference time-domain(FDTD) method: algorithm and material dispersion implementation', IEEE Microwave Theory and Tech., vol. 45, pp. 156-166, May 2003
  6. H. Rao, R. Scarmozzino, and R. M. Osgood, Jr., 'An improved ADI-FDTD method and its application to photonic simulations', IEEE Photonics Tech. Lett., vol. 14, pp. 477-479, Apr. 2002 https://doi.org/10.1109/68.992583
  7. S. Wang, J. Chen, 'Pre-iterative ADI-FDTD method for conductive medium', IEEE Microwave Theory and Tech., vol. 53, pp. 1913-1918, Jun. 2005 https://doi.org/10.1109/TMTT.2005.848086
  8. S. Ju, H. Kim, and H. Kim, 'A study of the numerical dispersion relation for the 2-D ADI-FDTD method', IEEE Microw. Wirel. Compon. Lett., vol. 13, pp. 405-407, Sep. 2003 https://doi.org/10.1109/LMWC.2003.817161
  9. A. P. Zhao, R. M. Makinen, T. Namiki, and K. Ito, 'An accurate and logically correct way to verify the numerical dispersion relations of FDTD and ADI-FDTD methods', Microw. Opt. Technol. Lett., vol. 40, pp. 427-431, Mar. 2004 https://doi.org/10.1002/mop.11400
  10. G. Sun, C. W. Trueman, 'A simple method to determine the time-step size to achieve a desired dispersion accuracy in ADI-FDTD', Microw. Opt. Technol. Lett., vol. 40, pp. 487-490, Mar. 2004 https://doi.org/10.1002/mop.20012
  11. S. G. Garcia, T.-W. Lee, and S. C. Hagness, 'On the accuracy of the ADI-FDTD method', IEEE Antennas Wirel. Propag. Lett., vol. 1, pp. 31-34, 2002 https://doi.org/10.1109/LAWP.2002.802583