DOI QR코드

DOI QR Code

Purification and Chemical Characterisation of Laminaran from Eisenia bicyclis in Korea

대황(Eisenia bicyclis)으로부터 Laminaran의 정제 및 화학적 특성

  • Published : 2006.01.01

Abstract

Laminarans with different purity were prepared from Eisenia bicyclis and their structures were characterized. Crude laminaran was successively extracted two times at room temperature for 2 hr with 0.09 N HCl, and partially purified laminaran was isolated using cetylpyridinium chloride (CPC). Crude laminaran accounted for $14.5\%$ of the dry seaweed weight and contained $8.4\%$ protein, $7.6\%$ sulfate and $68.2\%$ polysaccharide. Partially purified laminaran accounted for $6.5\%$ of the dry algal weight and composed of $3.8\%$ protein, $3.2\%$ sulfate and $74.7\%$ total sugar, which is mainly composed of glucose $(83.3\%)$, indicating that partially purified laminaran was more purified polysaccharide than crude laminaran. Purified laminaran was fractionated into one fractions by Sephacryl S-300 HR column chromatography and this fraction was analysed by FT-IR, $^{13}C$ NMR, methylation and gel filtration chromatography. Purified laminaran showed $\beta-configuration$ $(^{13}C:103.0ppm,\;FT-IR:888cm^{-1})$ in the anomerization of the glycosidic linkages and was $(1\rightarrow3),\;(1\rightarrow6)$ linked $\beta-glucan$. The average molecular weight of purified laminaran was 12,600 dalton.

국내 울릉도 연안에서 자생하는 대황에서 라미나란을 분리, 정제 분획하여 구조적 특성을 비교하였다. 분쇄한 대황을 0.09 N HCl로 추출한 조 라미나란과 이를 CPC로 정제한 부분 정제 라미나란의 수율은 각각 $14.5\%,\;6.5\%$였으며, 그 화학적 조성을 비교해 보면, 총당의 함량이 $68.2\%$에서 $74.7\%$로 증가하였고, 단백질의 함량$(8.4\%\rightarrow3.8\%)$및 황산기의 함량$(7.6\%\rightarrow3.2\%)$로 감소하였으며, 주요 구성당인 glucose의 함량이 $55.0\%$에서 $83.3\%$로 증가하여 CPC를 사용하여 라미나란을 간단히 정제할 수 있었다. 라미나란의 분자량 및 당구조 분석을 위하여 부분정제 라미나란을 Sephacryl S-300 HR 칼럼으로 정제하였으며, 이 정제물의 평균 분자량은 12,500 dalton이었다. 그리고 총당의 함량이 $89.9\%$, 단백질 함량은 $1.1\%$, 그리고 황산기 함량 $0.8\%$ 이었으며, 주요 구성당인 glucose의 함량이 $98.3\%$였다. 그리고 FT-IR 분석 결과 glucose는 대부분 $\beta$-결합$(888\;cm^{-1})$의 형태로 존재하는 것을 확인하였다. 그리고 $^{13}C$ NMR 분석 및 methylation 분석을 해본 결과 라미나란은 주로 $\beta-1,3$ 결합에 $\beta-1,6$ 분지를 갖는 glucan임 을 확인하였다.

Keywords

References

  1. Cho DM, Kim DS, Lee DS, Kim HR, Pyeun JH. 1995. Trace components and functional saccharides in marine algae. 1. Changes in proximate composition and trace elements according to the harvest season and places. J Korean Fish Soc 28: 49-59
  2. Nishide E, Kinoshita Y, Anzai H, Uchida N. 1988. Dis-tribution of hot-water alginate in different parts of Undatia pinnatifida. Nippon Suisan Gakkaihi 54: 1619-1622 https://doi.org/10.2331/suisan.54.1619
  3. Conchie J, Percival EGV. 1950. Fucoidin. Part II. The hy-drolysis of a methylated fucoidan prepared from Fucus vesiculosus. J Chem Soc 827-832 https://doi.org/10.1039/jr9500000827
  4. Cote RH. 1959. Disaccharides from fucoidin. J Chem Soc 2248-2258 https://doi.org/10.1039/jr9590002248
  5. Mian AJ, Percival E. 1973. Carbohydrates of the brown seaweeds himanthalia lorea, and bifucaria bifurcata: Part II. structural studies of the 'fucans'. Car-bohydr Res 26: 147- 161 https://doi.org/10.1016/S0008-6215(00)85031-4
  6. Koo JG. 1997. Structural characterization of purified fu-coidan from Laminaria religiosa, sporophylls of Undaria pinnatifida, Hizikia pinnatifida and Sagassum fulvellum in Korea. J Korean Fish Soc 30: 128-131
  7. McClure MO, Moore JP, Blanc DF, Scotting P, Cook GM, Keynes RJ, Weber JN, Davies D, Weiss RA. 1992. In-vestigation into the mechanism by which sulfated poly-saccharides inhibit HIV-infection in vitro. AIDS Res Hum Retrovir 8: 19-26 https://doi.org/10.1089/aid.1992.8.19
  8. Nagumo T, Nishino T. 1996. Fucan sulfates and their anti-coagular activities. In Polysaccharides in Medicinal Ap-plications. Dumitriu S, ed. Marcel dekker, New York. p 545-574
  9. Witvrouw M, DeClercq E. 1997. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol 29: 497-511 https://doi.org/10.1016/S0306-3623(96)00563-0
  10. Zvyagintseva TN, Shevchenko NM, Nazarova IV, Scobum AS, Luk'yanov PA, Elyakova LA. 2000. Inhibition of com-plement activation by water-soluble polysaccharides of some far-eastern brown seaweeds. Comp Biochem Physiol 126C: 209-215
  11. Painter TJ. 1997. Algal olysaccharide. In The poly-saccharides. Aspinall GO, ed. Academic Press, New York. p 195-285
  12. Percival MS, McDowell RH. 1967. Chemistry and enzy-mology of marine algae polysaccharides. Academic Press, New York. p 53-71
  13. Matsuyama H, Magindaan REP, Yano T. 1992. Protective effect of schizophyllan and scleroglucan against Strep-tococcus sp. infection in yellowtail (Seriola quinqueradiata). Aquaculture 10: 197-203
  14. Usui T, Iwasaki Y, Hayashi K, Mizunno T, Tanaka M, Shinkai K, Arakawa M. 1981. Antitumor activity of water- soluble ${\beta}$-D-glucan elaborated by Ganoderma applanatum. Agric Biol Chem 45: 323-326 https://doi.org/10.1271/bbb1961.45.323
  15. Albersheim P, Darvill A, Augur C, Cheong JJ, Eberhard S, Hahn MG, Marfa V, Mohnen D, O`Neill MA, Spiro MD, York WS. 1992. Oiligosaccharins-oilgosaccharide regula-tory molecules. Acc Chem Res 25: 77-83 https://doi.org/10.1021/ar00014a004
  16. Bohn JS, BeMiller JN. 1995. 1,3-$\beta$-D-glucan as biological response modifiers: a review of structure functional activity trlationships. Carbohydr Polymers 28: 3-14 https://doi.org/10.1016/0144-8617(95)00076-3
  17. Zvyagintseva TN, Sundukova EV, Shevchenko NM, Pop-ivnich IB, Stechova SI, Yudakova ZS, Elyakova LA. 1997. The effects of 1,3;1,6-$\beta$-D-glucan on the phytoalezin set and the activity of carbohydrases in the soybean callus cultures and shoots. Acta Phytopathol Entomol Hungarica 32: 59-67
  18. AOAC. 1990. Official Methods of Analysis. 15th ed. Asso-ciation of offical analytical chemists, Virginia, USA
  19. Zvyagintseva TN, Shevchenko NM, Popivnich IB, Isakov VV, Scobun AS, Sundukova EV, Elyakova LA. 1999. A new procedure for the separation of water-soluble polysac-charides from brown seaweeds. Carbohydr Res 322: 32-39 https://doi.org/10.1016/S0008-6215(99)00206-2
  20. Scott JE. 1965. Fractionation by precipitation with qua-ternary ammonium salts. In Methods in carbohydrate chemistry. Whistler RL, ed. Academic press, New York. Vol 5, p 38-44
  21. Dubois M, Gills KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for the determination of sugars and related substances. Anal Chem 28: 350-356 https://doi.org/10.1021/ac60111a017
  22. Lowry OH, Rosebrough NJ, Farr L, Rindall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193: 256-275
  23. Dodgson KS, Price RG. 1962. A note on the determination of the ester sulfate content of sulfated polysaccharides. J Biochem 84: 106-110 https://doi.org/10.1042/bj0840106
  24. Furneaux RH, Miller IJ, Stevenson TT. 1990. Agaroids from Newzealand members of the Gracilariaceae (Gracilariales, Rhodophyta) a novel dimethylated agar. Hydrobiologia 205: 645-654 https://doi.org/10.1007/BF00040300
  25. Harris PJ, Henny RJ, Blakeney AB, Stone BA. 1984. An improved procedure for the methylation analysis of oli-gosaccharides and polysaccharides. Carbohydr Res 127: 59-73 https://doi.org/10.1016/0008-6215(84)85106-X
  26. Carpita NC, Shea EM. 1987. Linkage structure of car-bohydrates by gas chromatography-mass spectrometry (GC-MS) of partially methylated alditol acetates. In Analysis of Carbohydrates by GLC and MS. Biermann CJ, McGinnis GD, eds. CRC Press, Boca Raton. p 157-216
  27. Koo JG, Choi YS, Kwak JK. 2001. Blood-anticoagulant activity of fucoidans from sporophylls of Undaria pinnati-fida, Laminaria religiosa, Hizikia fusiforme and Sargassum fulvellum in Korean. J Korean Fish Soc 34: 515-520
  28. Ito K, Hori K. 1989. Seaweed: chemical composition and potential food uses. Food Rev Int 5: 101-144 https://doi.org/10.1080/87559128909540845
  29. Kwak JK. 2002. Production of non-specific immuno-stimulative polysaccharide and its application to aquaculture. PhD Dissertation. Berlin University, Germany
  30. Kim BH, Kweon MH, Lim WJ, Sung HC, Yang HC. 1998. Structural characterization of the anti-complementary and macrophage activating polysaccharides isolated from Aga-ricus bisporus. Korean J Food Sci Technol 30: 709-716
  31. Dilip R, Soumitra M, Indranil C, Malay P, Syed SI. 2005. Chemical analysis of a new (1$\rightarrow$3)-, (1$\rightarrow$6)-branched glucan from an edible mushroom, Pleurotus florida. Carbohydr Res 340: 2533-2539 https://doi.org/10.1016/j.carres.2005.08.006
  32. Park JH. 1996. Studies on the isolation and characterization of porphyran from Porphyra yezoensis. PhD Dissertation. Hanyang University, Korea
  33. Zvyagintseva TN, Shevcheko NM, Chizhov AO, Krupnova TN, Sundukova EV, Isakov VV. 2003. Water-soluble poly saccharides of some far-eastern brown seaweeds. Distribution, structure, and their dependence on the developmental conditions. J Marine Biol Ecology 294: 1-13 https://doi.org/10.1016/S0022-0981(03)00244-2
  34. Stuelp PM, Carneiro Leao AMA, Gorin PAJ, Iacomini M. 1999. The glucans of Ramalina celastri relation with che-motypes of other lichens. Carbohydrate Polymers 40: 101- 106 https://doi.org/10.1016/S0144-8617(99)00048-X

Cited by

  1. Production and Characterization of β-Glucan Type Oligomer Produced with Enzymatic Hydrolysis of Capsosiphon fulvescens vol.28, pp.3, 2013, https://doi.org/10.7841/ksbbj.2013.28.3.151
  2. 대황유래 Laminaran이 고콜레스테롤 식이를 급여한 흰쥐의 혈청지질 성분에 미치는 영향 vol.35, pp.7, 2006, https://doi.org/10.3746/jkfn.2006.35.7.841