Effect of Exopolymers of Aureobasidium pullulans on Improving Osteoporosis Induced in Ovariectomized Mice

  • SONG HEBOK (TG Biotech Research Institute, Kyungpook National University) ;
  • PARK DONG CHAN (TG Biotech Research Institute, Kyungpook National University) ;
  • DO GYUNG MIN (TG Biotech Research Institute, Kyungpook National University) ;
  • HWANG SEUNG-LARK (TG Biotech Research Institute, Kyungpook National University) ;
  • LEE WON KYU (TG Biotech Research Institute, Kyungpook National University) ;
  • KANG HEUN-SOO (Metabolic Engineering Laboratories) ;
  • PARK BOK-RYUN (Glucan Co., Bio 21 Center) ;
  • JANG HEE-JEONG (Glucan Co., Bio 21 Center) ;
  • SONG CHANG-WOO (Glucan Co., Bio 21 Center) ;
  • PARK EUI KYUN (Skeletal Diseases Genome Research Center, Biomedical Research Institute, Kyungpook National University Hospital) ;
  • KIM SHIN-YOON (Department of Orthopedic Surgery, Biomedical Research Institute, Kyungpook National University, Hospital) ;
  • HUH TAE-LIN (Kyungpook National University, Department of Genetic Engineering)
  • 발행 : 2006.01.01

초록

Treatment with exopolymers of Aureobasidium pullulans SM-2001 containing $\beta-1,3/1,6-glucan$ inhibited osteoclastogenesis of bone marrow stem cells in a co-culture system with calvariae osteoblastic cells. In addition, the treatment increased mineral deposition in osteoblastic cells. These two observations prompted us to evaluate whether the exopolymers could be used as an anti-osteoporotic agent, and efficacy of the exopolymers to prevent bone loss was compared with alendronate, a bisphosphonate, in ovariectomized mice prone to osteoporosis. Administration of the exopolymers to the ovariectomized mice resulted in improved effects on femur weight and histomorphometric changes of femur such as trabecular bone volume (TBV), trabecular bone thickness (TBT), and cortical bone thickness (CBT). In conclusion, the exopolymers treatment inhibited bone loss from osteoporosis induced by ovariectomy, and the effect was comparable to alendronate administration.

키워드

참고문헌

  1. Bell, N. H. 2001. Advances in the treatment of osteoporosis. Curr. Drug Targets Immune Endocr. Metabol. Disord. 1: 93-102 https://doi.org/10.2174/1568008013341622
  2. Boivin, G. and P. J. Meunier. 2003. The mineralization of bone tissue: A forgotten dimension in osteoporosis research. Osteoporos. Int. 14 Suppl. 3: S19-24 https://doi.org/10.1007/s00198-002-1317-8
  3. Bone, H. G., D. Hosking, J. P. Devogelaer, J. R. Tucci, R. D. Emkey, R. P. Tonino, J. A. Rodriguez-Portales, R. W. Downs, J. Gupta, A. C. Santora, and U. A. Liberman. 2004. Alendronate phase III osteoporosis treatment study group. Ten years' experience with alendronate for osteoporosis in postmenopausal women. N. Engl. J. Med. 350: 1189-1199 https://doi.org/10.1056/NEJMoa030897
  4. Boyle, W. J., W. S. Simonet, and D. L. Lacey. 2003. Osteoclast differentiation and activation. Nature 423: 337- 342 https://doi.org/10.1038/nature01658
  5. Chappard, D., M. Petitjean, C. Alexandre, L. Vico, P. Minaire, and G. Riffat. 1991. Cortical osteoclasts are less sensitive to etidronate than trabecular osteoclasts. J. Bone Miner. Res. 6: 673-680 https://doi.org/10.1002/jbmr.5650060704
  6. Hong, K. H., K. H. Jang, J. C. Lee, S. H. Kim, M. K. Kim, I. Y. Lee, S. M. Kim, Y. H. Lim, and S. A. Kang. 2005. Bacterial ${\beta}$-glucan exhibits potent hypoglycemic activity via decrease of serum lipids and adiposity, and increase of UCP mRNA expression. J. Microbiol. Biotechnol. 9: 826-831
  7. Kabir, M., J. M. Oppert, H. Vidal, F. Bruzzo, C. Fiquet, P. Wursch, G. Slama, and S. W. Rizkalla. 2002. Four-week low-glycemic index breakfast with a modest amount of soluble fibers in type 2 diabetic men. Metabolism 51: 819- 826 https://doi.org/10.1053/meta.2002.33345
  8. Kim, H. N., J. N. Lee, G. E. Kim, Y. M. Lee, C. H. Kim, and J. W. Sohn. 1999. Comparative study of immune-enhancing activity of crude and mannoprotein-free yeast-glucan preparations. J. Microbiol. Biotechnol. 9: 826-831
  9. Lauritzen, D. B., R. Balena, M. Shea, J. G. Seedor, A. Markatos, H. M. Le, B. C. Toolan, E. R. Myers, G. A. Rodan, and W. C. Hayes. 1993. Effects of combined prostaglandin and alendronate treatment on the histomorphometry and biomechanical properties of bone in ovariectomized rats. J. Bone Miner. Res. 8: 871-879 https://doi.org/10.1002/jbmr.5650080713
  10. Levi, G., V. Geoffroy, G. Palmisano, and M. C. de Vernejoul. 2002. Bones, genes and fractures: Workshop on the genetics of osteoporosis: From basic to clinical research. EMBO Rep. 3: 22-26 https://doi.org/10.1093/embo-reports/kvf003
  11. Lorden, J. F. and A. Caudle. 1986. Behavioral and endocrinological effects of single injections of monosodium glutamate in the mouse. Neurobehav. Toxicol. Teratol. 8: 509-519
  12. McClung, M. R., R. D. Wasnich, D. J. Hosking, C. Christiansen, P. Ravn, M. Wu, A. M. Mantz, J. Yates, P. D. Ross, and A. C. Santora. 2004. Prevention of postmenopausal bone loss: Six-year results from the early postmenopausal intervention cohort study. J. Clin. Endocrinol. Metab. 89: 4879-4885 https://doi.org/10.1210/jc.2003-031672
  13. Park, E. K., Y. E. Lee, J. Y. Choi, S. H. Oh, H. I. Shin, K. H. Kim, S. Y. Kim, and S. Kim. 2004. Cellular biocompatibility and stimulatory effects of calcium metaphosphate on osteoblastic differentiation of human bone marrow-derived stromal cells. Biomaterials 25: 3403-3411 https://doi.org/10.1016/j.biomaterials.2003.10.031
  14. Rodan, G. A. and T. J. Martin. 2000. Therapeutic approaches to bone diseases. Science 289: 1508-1514 https://doi.org/10.1126/science.289.5484.1508
  15. Sakai, A., S. Nishida, N. Okimoto, Y. Okazaki, T. Hirano, T. Norimura, T. Suda, and T. Nakamura. 1998. Bone marrow cell development and trabecular bone dynamics after ovariectomy in ddy mice. Bone 23: 443-451 https://doi.org/10.1016/S8756-3282(98)00121-5
  16. Seedor, J. G., H. A. Quartuccio, and D. D. Thompson. 1991. The bisphosphonate alendronate (MK-217) inhibits bone loss due to ovariectomy in rats. J. Bone Miner. Res. 6: 339- 346 https://doi.org/10.1002/jbmr.5650060405
  17. Seo, H.-P., J.-M. Kim, H.-D. Shin, T.-K. Kim, H.-J. Chang, B.-R. Park, and J.-W. Lee. 2002. Production of ${\beta}$-1,3/1,6-glucan by Aureobasidium pullulans SM-2001. Korean J. Biotechnol. Bioeng. 17: 376-380
  18. Stanford, C. M., P. A. Jacobson, E. D. Eanes, L. A. Lembke, and R. J. Midura. 1995. Rapidly forming apatitic mineral in an osteoblastic cell line (UMR 106-01 BSP). J. Biol. Chem. 270: 9420-9428 https://doi.org/10.1074/jbc.270.16.9420
  19. Strewler, G. J. 2004. Decimal point-osteoporosis therapy at the 10-year mark. N. Engl. J. Med. 350: 1172-1174 https://doi.org/10.1056/NEJMp048017
  20. Teitelbaum, S. L. 2000. Bone resorption by osteoclasts. Science 289: 1504-1508 https://doi.org/10.1126/science.289.5484.1504
  21. Tohamy, A. A., A. A. El-Ghor, S. M. El-Nahas, and M. M. Noshy. 2003. Beta-glucan inhibits the genotoxicity of cyclophosphamide, adriamycin and cisplatin. Mutat. Res. 541: 45-53 https://doi.org/10.1016/S1383-5718(03)00184-0
  22. Udagawa, N., N. Takahashi, T. Akatsu, H. Tanaka, T. Sasaki, T. Nishihara, T. Koga, T. J. Martin, and T. Suda. 1990. Origin of osteoclasts: Mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc. Natl. Acad. Sci. USA 87: 7260- 7264
  23. Van Beek, E., E. Pieterman, L. Cohen, C. Lowik, and S. Papapoulos. 1999. Farnesyl pyrophosphate synthase is the molecular target of nitrogen-containing bisphosphonates. Biochem. Biophys. Res. Commun. 264: 108-111 https://doi.org/10.1006/bbrc.1999.1499
  24. Yan, J., V. Vetvicka, Y. Xia, A. Coxon, M. C. Carroll, T. N. Mayadas, and G. D. Ross. 1999. Beta-glucan, a 'specific' biologic response modifier that uses antibodies to target tumors for cytotoxic recognition by leukocyte complement receptor type 3 (CD11b/CD18). J. Immunol. 163: 3045-3052
  25. Yang, B. K., J.-B. Park, and C. H. Song. 2002. Hypolipidemic effect of exo-polymer produced in submerged mycelial culture of five different mushrooms. J. Microbiol. Biotechnol. 12: 957-961
  26. Zhang, F. L. and P. J. Casey. 1996. Protein prenylation: Molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65: 241-269 https://doi.org/10.1146/annurev.bi.65.070196.001325