Realization of Block LMS Algorithm based on Block Floating Point

BFP 기반의 블록 LMS 알고리즘 구현

  • 이광재 (한려대학교 멀티미디어 정보통신공학과) ;
  • ;
  • 박주용 (서남대학교) ;
  • 이문호 (전북대학교 정보통신연구소)
  • Published : 2006.01.01

Abstract

A scheme is proposed for implementing the block LMS algorithm in a block floating point framework that permits processing of data over a wide dynamic range at a processor complexity and coat as low as that of a fixed point processor. The proposed scheme adopts appropriate formats for representing the filter coefficients and the data. Using these and a new upper bound on the step size, update relations for the filter weight mantissas and exponent are developed, taking care so that neither overflow occurs, nor are quantifies which are already very small multiplied directly. It is further shown how the mantissas of the filter coefficients and also the filter output can be evaluated faster by suitably modifying the approach of the fast block LMS algorithm

고정 소수점 처리기만큼 낮은 복잡도와 비용으로 넓은 동작 영역의 데이터 처리가 가능한 블록 부동 소수점 체제에서 블록 LMS 알고리즘의 구현을 위한 기법을 제시하였다. 제안 기법은 필터 계수 및 데이터의 표현을 위한 적절한 포맷을 적용하였다. 또한, 시변 mantissa와 시변 exponent를 갖는 스텝 크기에 대해 scaled 표현을 적용하였다. Scaled 표현과 새로운 상한을 이용하여, 필터 계수의 무게 mantissa와 exponent에 대한 업데이트 관계를 개발하였으며, 오버 플로우가 발생하지 않도록 할 뿐만 아니라 이미 직접 곱해진 미소량도 고려하였다. 또한 필터 계수의 mantissa와 필터 출력 역시 고속 블록 LMS 알고리즘 기법의 적절한 수정에 의해 더욱 빠르게 평가할 수 있는 방법을 보였다.

Keywords

References

  1. K. R. Ralev and P. H. Bauer, 'Realization of Block Floating Point Digital Filters and Application to Block Implementations,' IEEE Trans. Signal Processing, vol. 47, no. 4, pp. 1076-1086, April 1999 https://doi.org/10.1109/78.752605
  2. K. Kalliojarvi and J. Astola, 'Roundoff Errors in Block-Floating-Point Systems,' IEEE Trans. Signal Processing, vol. 44, no. 4, pp. 783-790, April 1996 https://doi.org/10.1109/78.492531
  3. P. H. Bauer, 'Absolute Error Bounds for Block Floating Point Direct form Digital Filters,' IEEE Trans. Signal Processing, vol. 43, no. 8, pp. 1994-1996, Aug. 1995 https://doi.org/10.1109/78.403360
  4. S. Sridharan and G. Dickman, 'Block floating point implementation of digital filters using the DSP56000,' Microprocess. Microsyst., vol. 12, no. 6, pp. 299-308, July-Aug. 1988 https://doi.org/10.1016/0141-9331(88)90186-X
  5. S. Sridharan and D. Williamson, 'Implementation of high order direct form digital filter structures,' IEEE Trans. Circuits Syst., vol. CAS- 33, pp. 818-822, Aug. 1986 https://doi.org/10.1109/TCS.1986.1086002
  6. F. J Taylor, 'Block Floating Point Distributed Filters,' IEEE Trans.· Circuits Syst., vol. CAS- 31, pp. 300-304, Mar. 1984 https://doi.org/10.1109/TCS.1984.1085491
  7. David Elam and Cesar Lovescu, 'A Block Floating Point Implementation for an N-Point FFT on the TMS320C55X DSP', Texas Instruments Application Report, SPRA948, Sept., 2003
  8. E. Bidet, D. Castelain, C. Joanblanq and P. Senn, 'A Fast Single-Chip Implemntation of 8192 Complex Point FFT', IEEE J. Sol. State Circs., Vol. 30, No. 3, pp. 300-305, March, 1995 https://doi.org/10.1109/4.364445
  9. A. Erickson and B. Fagin, 'Calculating FHT in Hardware', IEEE Trans. Signal Processing, vol. 40, pp. 1341-1353, June 1992 https://doi.org/10.1109/78.139240
  10. A. Mitra, M. Chakraborty and H. Sakai, 'A Block Floating Point Treatment to the LMS Algorithm: Efficient Realization and a Roundoff Error Analysis', to appear in the IEEE Trans. Signal Processing; also appeared in Proc. ICASSP 2003, Hong Kong, 2003
  11. A. Mitra and M. Chakraborty, 'The NLMS Algorithm in Block Floating Point Format', IEEE Signal Process. Letters, pp. 301-304, March 2004 https://doi.org/10.1109/LSP.2003.822891
  12. M. Chakraborty and A. Mitra, 'A Block Floating Point Realization of the Gradient Adaptive Lattice Filter', IEEE Signal Process. Letters, pp. 265- 268, April, 2005 https://doi.org/10.1109/LSP.2005.843781
  13. S. Haykin, Adaptive Filter Theory, Englewood Cliffs, NJ: Prentice-Hall, 1986