2006 18 HAZEE =X A B3 HSPHA1 S

=& 2006-43SP-1-11

BFP 7|9k &5 IMS ¢uzlE 74

(Realization of Block LMS Algorithm based on Block Floating Point)

Sz, Qg REE kKoK ok

H]"T‘o y

4 °of ¥ %

o] 34 A, M. Chakraborty™,
(Kwang-Jae Lee, Mrityunjoy Chakraborty, Ju-Yong Park, and Moon-Ho Lee)

2 o

24 259 AY/E g BgEs) v)goe B B4 999 oy A} sd B R 25W AN 23
LMS ¢uelFel 7EE 99 /18 ANSA AL /Ee A8 A5 2 dole) FAL AY 48P TR 485
ok =3 AW mantissast A¥ exponent® ZH= 28 Ao} thal] scaled HL AL5AY) Scaled AT PEERPES
]%0}‘4 Pe| A% A mantissa®t exponentol thit QHlo|E WAES usigdon] oB Tz oyt BAEA] UL E o
E1:R=] 0}‘-43} 0]‘3] ;d%j ‘“‘3“2] U] B3 iﬁo}‘ﬂ‘:} w3 %E'i AT mant1ssa9Jr %E—] = O:l}\] _,—l_f:;_ EE IMS gugs
1ol AAs A 9 6L nzA Pg <= 9= S vk

Abstract

A scheme is proposed for implementing the block LMS algorithm in a block floating point framework that permits
processing of data over a wide dynamic range at a processor complexity and cost as low as that of a fixed point
processor. The proposed scheme adopts appropriate formats for representing the filter coefficients and the data. Using
these and a new upper bound on the step size, update relations for the filter weight mantissas and exponent are
developed, taking care so that neither overflow occurs, nor are quantities which are already very small multiplied directly.
It is further shown how the mantissas of the filter coefficients and also the filter output can be evaluated faster by

9

suitably modifying the approach of the fast block LMS algorithm

Keywords : Block LMS (BLMS), Fast BLMS, Block Floating Point.

I. INTRODUCTION

" A, dEdeE 2E vt A RENETE
(Dept. of Multimedia Information &
Telecommunications, Hanlyo University)

T A9, Q%7149 (Indian Institute of Technology)

™ A3 J, ’\1‘#Eﬂ§}_’ (Seonam University)

B =i 28y AHEAATA
(Instltue of information & Commumcatlon Chonbuk
National University)

¥ This work was supported by The International

Cooperation Research Program of the Ministry of

Science & Technology, KOTEF and Chonbuk

National University.

Az} 2005389239,

e TRLEY: 200603143Y

1)

The block floating point (BFP) format provides an
elegant means of floating point (FP) emulation on a
simple, low cost fixed point (FxP) processor. In BFP,
a common exponent is assigned to a group of
variables. As a result, computations involving these
variables can be carried out in simple FxP like
manner, while presence of the exponent provides a
FP like high dynamic range. This has prompted
several researchers in recent past to use the BFP
format for efficient realization of many signal
processing systems and algorithms, including various
forms of digital filters™ and unitary transforms ",

92

The BFP format has also been used in several .

digital audio data transmission standards like NICAM
(stereophonic sound system for PAL TV standard),
the audio part of MUSE (Japanese HDTV standard)
and DSR (German Digital Satellite Radio System).
However, almost all the research efforts in this area
constant
coefficients and not on systems like adaptive filters

have focussed on systems Thaving

that have time varying parameters. A BFP treatment

to adaptive filters faces certain difficulties, not
encountered in the fixed coefficient case, namely,
* Unlike a fixed coefficient filter, the {ilter

coefficients in an adaptive filter can not be
represented in the simpler fixed point form, as the
coefficients in effect evolve from the data by a
time update relation ;

* The two principal operations in an adaptive

Realization of Block LMS Algorithm based on Block Floating Point

filterfiltering and weight updating, are mutually

coupled, thus requiring an appropriate arrangement

for joint prevention of overflow.

Recently, a BFP based approach has been proposed
for efficient realization of the LMS based transversal
adaptive ﬁlters[w], which was later extended to the
normalized LMS algorithm[11] and the gradient
02" The philosophy used in [10]

employs block processing technique and can provide

adaptive lattice
considerable savings in computational complexities
when applied to the Block LMS (BLMS) algorithm!™,
as shown in this paper. For this, we first recast the
BLMS algorithm using the framework of [10]. This
requires adoption of appropriate BFP format for the
filter coefficients which remains invariant as the
coefficients are updated from block to block. Using
this, along with the BFP representation of the data
as used in [10] and a new upper bound on the
algorithm step size, update relations for the filter
are developed,
maintaining overflow free operation all throughout.
Note that the BLMS weight update relation is more
complex than its LMS counterpart, as the former

weight mantissa and exponents

needs to sum up several products between data
vectors and error samples. Special care had to be
taken 1n its computation using the adopted BFP

(92)

olZH 2

format so that neither overflow occurs, nor are
quantities which are already very small multiplied
directly.

Next, we show how the filter output mantissas and
the filter weight mantissas can be evaluated faster,
by appropriately adjusting the approach of the FFT
based fast BLMS (FBLMS) algorithm™. Such
adjustment requires introduction of one extra IFFT
operation in the weight update loop in order to
implement a time domain constraint. However, despite
this, considerable gains in computational complexities
are achieved, since all the FFT/IFFT’s are based on
BFP arithmetic only.

II. The BFP Background

The BFP representation can be considered as a
FP format,
non-overlapping block of N incoming data has a joint

special case of the where every

scaling factor corresponding to the data sample with
the highest magnitude in the block. In other words,

given a block [x],..,x\ we represent it as where
(xy, ...xd=Lx,, .., 27 represents the mantissa
for [—1,2, ..,INand the block exponent y is defined
y= | log yMax | +1+S M=
mex(xl, ..,,lx), " | -]’ is the so—called floor

function, meaning rounding down to the closest

as where

integer and the integer S is a scaling factor which is
needed to prevent overflow during filtering operation.
Due to the presence of S, the range of 2 each
mantissa is given as 0<|x 1<2 7S The scaling
factor S can be calculated from the inner product

computation representing filtering operation. An inner
product is calculated in BFP arithmetic as

A =w'"#») _
=w, K +.. +w,_ Kn—L+DR7 1)
= %(n2” |

where ,,is a length J, ﬁ)%ed point filter coefficient

vector and A») is the data vector at the 5—g
index, represented in the aforesaid BFP format. For

no overflow in 3(z), we need | y(#)|(1 at every

2006 18 HxEeE =2X M 43 A SPH A1

time index, which can be satisfied[2] by selecting

L—-1
S28 in = | log o Zdomg)}

where * [. 1" is the

so—called ceiling function, meaning rounding up to the

closest integer.
IMI. Proposed Implementation
Consider a length 7, BLMS based adaptive filter

that takes an x(»), which is
partitioned into non-overlapping blocks of length P

input sequence

each, with the j—g block, (jez) consisting of
P+, r=Zp=0,1,..,P—1. The filter
coefficients are updated from block to block as,

w(i+1)=wl)+pu I:Z_le(jP-F r)e(jP+ 7) ©)

where

wD=[wDw() ... w, ()] is the tap
weight vector corresponding to the j;—g block,

KP+9 =[x(GP+) x(GP+r—1) .. s(jP+»—L+1)] !

and P+ %) =d(jP+7») ~3»jP+7) is the output
error at y=jP+7 The sequence AP+ is the
so—called desired response available during the initial
training period and y(jP+ ») = w(H)x(FP+7) is the
filter output at y=jP+s with denoting the so
called step size parameter.

The proposed scheme consists of two simultaneous
BFP representations, one for the filter coefficient
vector w(sj) and the other for the given data,

namely, () and #). These are as follows:

(a) BFP representation of the filter coefficient
vector :

Here, the tap weight vector w(7) is represented

in a scaled format as

wi)= w(i2? 3

where —w(/) and ¢; are respectively the filter
mantissa vector and the filter block exponent which
are updated separately over the block index ; Note

that in the above representation, all components of

ufy) are normalized by the same factor 2% In our

(93

93

treatment, the exponent ¢; is a non-decreasing

function of ; with zero initial value and is chosen to

ensure that | wk(])K_%, keZ,={0,1,..,L-1}. If
a data vector x(jP+7) is given in the aforesaid BFP
format as x(jP+7) = x(jP+ 727 and y=ex+S
ac=|log M) +1, M=max(xGP+r—k)|lksZ)
and S is an appropriate scaling factor, then, the filter
output yW(jP+7) be expressed
WiP+A="y(P+727"% with yiP+p)=
“w'(j) #(jP+») denoting the output mantissa. To
WjP+7), it is required
| (jP+ »)|<1. However, in the proposed scheme,

1
2

can as

prevent overflow in

- 1
we restrict y(jP+7) to lie between T and
| L-1
ie, | YGP+MI<5 Since, [GP+nI< 21w, 0]

| x(GP+7r—FR), and

0<| x(GP+7r—RI<2 S

e 1
| w0 9 this implies a lower limit of S as
Stin= log,L 1.

The two condition_si
l—;)k(l)KJi and | KIPH T)K% ensure no

overflow during updating of —w(j) and computation

of output error mantissa respectively as shown later.

(b) BFP representation of the given data :

The input data 2y) and the desired response
&) partitioned
non-overlapping blocks of N samples each with the
i—th block, 1 =7t={0,1,2, ...}, consisting of (),
dw) for neZ ={iN,iN+1,..,iN+N—-1}. In our

present treatment, we choose NN based on the

sequence are jointly in

following constraints :

(i) N> —1, meaning that at any point of time,
data from at most two adjacent blocks may come
under filtering operation, and,

(i) N=KPpP for some integer K meaning that in a
block of duration N the filter coefficients are
updated a total of K times over K sub-blocks of
length pPeach. The data samples x{(7) and A7)

94

constituting a block are jointly scaled so as to
have a common BFP representation for the block

under consideration. This means that, for #eZ,

x(m) and) are expressed as

xn=xn2", dn=dn2" (4)

where 7; is the common block exponent for the
i-fh block and is given as y,=ex,+S; where
ev;=llog ,M;] +1 M;=nex{|dn),
|d)| |n=Z'} . The scaling factor S is assigned as
per the following exponent assignment algorithm :

and

Exponent Assignment Algorithm :

: Assign Sy = [log,L]as the scaling factor to
the first block and for any (;—1) —# block, assume
Si212S in-

Then, if ex;2ex;_,,

choose S;=S, (e, 7,=ex+S)

else (ie, ex <ex; ;)

choose S;=(ex; ;—ex)+S i,

(e, 7i~ex; 1 +Sm)

Note that when ex,=ex,_; we can either have
ex;+S =7,y (Case A) implying 7,2y, ; or
(Case B) Y<riz1

ex ;TS min7i-1 meaning

However, for ex <{ex;_, (Case C), we always have

v =<7;-. Additionally,
HiN-L+1), .., {iN—1) by dividng by 24

where dy;=y;—7i.
Equivalently, for the elements x(;N—L+1), -

we rescale the elements

x(iN—1), we change S;; to an effective scaling
factor of S_;=S;_;+4y, This permits a BFP
repfesentation of the data vector () with common
exponent 7; during block-to-block transition phase
too, ie, when part of x(z) comes from the
(/—1)—th block and part from the ;—# block.

In practice, such rescaling is effected by passing
each of_ the delayed terms _J_c(n—k), k=1,..,.L—1,
through a rescaling unit that applies Zy; number of
right or left shifts on }(n—k) depending on whether
y; is positive or negative reépectively. This is,

Realization of Block LMS Algorithm based on Block Floating Point

99

ol 2|

however, done only at the beginning of each block,
ie, at indices p=4N, 7=Z Also, note that though
for the case (A), 4y 20, for (B) and (C), however,
Ay <0, meaning that in these cases, the aforesaid
mantissas from the (;—1)—# block are actually
scaled up by 92 4 It is, however, not difficult to

see that the effective scaling factor S}_l for the
elements WjN—L+1), - x(iN—1) still remains
lower bounded by S, thus ensuring no overflow

during filtering operation.

Formulation of the BLMS Algorithm in BFP
format :

We begin by considering the J[—# sub-block,
[=0,1,..,K—1 within the ;—# block. This
of data at the (iK+)P+
r=0,1, .., P—1. Replacing (jK+)) by j one can
then write ¢(jP+#) as djP+H= e(jP+12% 77",
where the mantissa g(jP+7) is given as

consists ndices

P+ = diP+72 Y= y(iP+7) ®)

Clearly, computation of &jP+») involves . an
additional step of right-shift operation on iP+7)
an operation that comes frequently in FP arithmetic.
However since in an adaptive filter, filter coefficients
are derived from data and thus can not be
represented in FxP format when data is given in a
scaled form, such a step seems to be unavoidable. It

1S easy to check that I_e(P+ #)|<1, since

| d(iP+ 2| <[dGP+ P12 4+ WGP+)

—(S+S) , 1 2h¢i 1
{2 + 2 < I + 2 6)

~SiL
as 2 7= L. Except for ¢;=0, [=] the RHS. is
always less than or equal to 1.
For the above description of &(;P+), x(iP+7)

and uf7), the weight update equation (2) can be
written as,

uG+1)= 2 (7)

where

2006 18 MASEE =X M 43 HSPEH A1 =

W=+ S P GPR T

As stated earlier, y(;j+1) is required to satisfy

. —L

I uli+DIK 9 for k=Z;, which can be realized in
several ways. Our preferred option is to limit Uy so
that | (;)|<1, #=Zp Then, if each) happens

1
to be lying within * 2, we make the assignments :

wGHD) =), $in1=9; 9)

Otherwise, we scale down _y(]) by 2, in which

case

WHD=FU) ¢~y 41 (10)

In order to have | y(;)|<1, A=Z; satisfied, we

— _ p-1_
observe that 2,0l =l w O+ 1 ZE), a(jP+r—k)

_ — a1
TP+ AR Since | WK< p=z,, it s

sufficient to have

7 21|_x(jP+ r—RI eGP+ P22 S—% .
Taking the upper bound of [e(jP+7)| as
{2 e +%2 -] and recalling that
[7P+ r—R)|<2 5 this implies
o ~2ec;
“=H L (11

It is eésy to Ven'fy that the above bound for is
valid not only when each element of x(jP+7) in (8)
comes purely from the ;—#; block, but also during
transition from the (;—1)—# to the ;—g block
which, after necessary

with ax,'Zexz-_l, for”

rescaling, we have S;_;=S,=S. implying
-8,

_ (i L
[2GP+7r—BI<2 =5 and thus | SPHII<752 7

For ex {ex;_ |, however, the upper bound

expression given by (11) gets modified with ex;

95

replaced by ex;;, as in that case, we have
7i=@Ci_1+S;~_1 with Sll;.l:Smin<Si meaning
[x(jP+7r—RI<2 75 and thus [3(P+2<

L _si—l . — i
22" leading to [eP+AKK2 S+

From above, we obtain a general upper bound for
o by equating ¢; to its lowest value of zero and
replacing e; by ex g, =mex{exieZ"} in (1)
The general upper bound is given by:

g 2t

H<HL+2], (12)

The above bound is actually less than 2/[P#R]
which is the upper bound for 4 for convergence
of the BLMS algorithm. To see this, we note
I(mI<2 == Hx A(m)]<2 7.

implies thus

that and thus
This tr R{I2 %™

2/[PtrR]>2 ~ % = | (L +2).
Finally, for practical implementation of 2(j) as

and

given by (8), we need to evaluate the update term:

P-1
—. DT 27;
ﬂr2=0 x(jP+r—Fk) &jP+7)2 k=2, in such

a way that no overflow occurs in any of the
intermediate products, shifts,
involved. At the same time, we need to avoid direct
product of quantities which could be very small, as

or the summation

that may lead to loss of several useful bits wvia
truncation. For this purpose, we proceed as follows:
if ex;=ex; ;| then, S;=S,;, and we express 2%
as 92=92 1S9 S

S‘i—l =S min,
decompose 9% as 9%i=92%%i1*Swm9Sw The factor
02, +S then

distributed to compute the update term as follows :

if, instead, er;{exr;;

then, 7;‘=@Ci—l+sli—l and we

mlor 92=TSm) and 925w are

Step 11 p; =22 Sm if ox ,>ex, ; if

e Kex; g, p=p2% " Sm
Step 2: x;jP+P= e \(P+7) (say),

Step 3: x(FP+7r—B2 5= x ,GP+r—B (say),

96

Pl -
Step 4: gxl(JP-Fr—le) e (jP+7)

It is easy to check that the operations described in

steps 1-4 above produce no intermediate overflow.
S in
Firstly, from (12), it follows that &~ HAL+72]

2L
Since, [.{9Sm<9[this implies #i= HAL+2]-
For the BLMS algorithm, sub-block length s is at

least two, thus ensuring gz ;<1. Next, note that in all
—(; ~(Swnt¢) | Loy —Sp
Using this and the above observation that

S
/“‘iSHL+2], it is easily seen that

(i -
| e,GP+7I< 2P. Similarly, in step 3

| 2 ,GP+7—=RIK1, since [x(iP+r— K2~ Sm.
Finally, in step 4, the summation evaluates the update
term, which is pre-constrained to be less than half.

Note that in Step 3 above, for »=(), ;=K the
L—1 terms x,GP—A), k=1,2, .., L—1, correspond
to the last (7—]) mantissas of the (;—1)—#
block, rescaled by 92 ™% Further scaling of these
terms by 9= can be carried out during the block
formatting stage, ie, before the processing of the ;
-th block. The proposed BFP treatment to the BLMS
algorithm 1-4
summarized in Table 1.

including the above Steps 1s

¥ 1. BFP ZWo= F8E BIMS ¢nz|Ee 29
Table 1. Summary of the BLMS algorithm realized in

BFP format

(Initial conditions: ¢,=0), |wz<0)|<“2L, k=Z)).

1. Preprocessing :

Using the data for the ;—g block, x(#) and
dn), n€Z, jez+
(stored during the processing of the
block),

(a) Evaluate block exponent

(=D —th

Vi the
Exponent Assignment Algorithm of Section

() dn),

as per

3 and express neZ,; as

Realization of Block LMS Algorithm based on Block Floating Point

o1 g 2

)= xn2" dn= dn?2"

(b) Rescale following elements of the (;—1)—#
block :

{dWn=iN-L+1,..,iN—1} as

HK)—K2 ™Y, Ly =yi—vioy:

[Also for Step 3 of section III, rescale the same

separately by 9 ~4ritSm]

2. Preprocessing for ;g block :
For the /- sub-block within the
=01, ..,K—],
Define j= K+
For w=ip+x »=01,..,P1
Filter out:
M= w'() An),
Output error (mantissa) computation :
dn)=dn2 "= 3n).
end
ex_od(f)=y;+¢;
(ex _out(j) is a filter output exponent for the j—
sub-hlock)
Filter weight updating :

i—th block,

Pl _
D= T WGP PR

Compute all
=z, ={0,1,..,L-1} following Step 1 — Step 4 of section
.

UD= u)+ u(j)-

(where = ug®, us@, .., 2,1

it [k(f)|<*2L for all k=Z,,
then
wG+D = o),
$ir1=9;
else
UG =%),

$ir=¢;tL
end.
end.
1=7+1.
Repeat step 1 to 2.

20064 18 HASE

Fast Implementation :

A treatment similar to the one used in the
derivation of the FBLMS algon'thmm’] from the
BLMS algorithm can be used in the above context
for a faster evaluation of the filter output mantissa
"y(») and the weight vector mantissa yfj).

For the J—# sub-block within the ;—#; block,
0<I<K-1, le, for yp=jP+» r=0,1,..,P—1
j=iK+1 the filter output mantissa
Ww)= w'y) Kn) is obtained by convolving the
input data mantissa sequence x(z) with the filter

_7/00(7), vy _u)L_l(f) and thus
efficiently by the overlap-save

coefficlent mantissas
can be realized
method via Jf=] + P—1 point FFT, where the first
L—1 points come from the previous sub-block, for
which the output is to be discarded. Similarly, the
update term in Step 4, above,

weight viz.,

Pl - .
Z&xl(JPH—k) ¢l0Pt) an be obtained by the usual

circular correlation technique, by employing M point
FFT and setting the last pP—] output terms as zero.
The resulting scheme for fast computation of (3

and y(j) is demonstrated in Fig. 1. Note that,

(a) The weight update loop in Fig. 1 is different from
the weight update loop of the conventional FBLMS
FBLMS scheme[13], as, an additional IFFT is
used here to get the filter weights back to the
time domain, in order to implement the weight
update relations (9) and (10). This is needed,

since, in our proposed scheme, weight updating

requires checking the condition: lv k(7)|<_% for
al B (<k<[—]which is a purely time
domain constraint and has no eguivalent
frequency domain counterpart. However, as the
FFT and IFFT computations are FxP based, the
overall computational cost of the proposed fast
implementation scheme still remains much less
than a conventional FP-based FBLMS
as shown in the next section.

Fach FFT/IFFT in Fig. 1 can be implemented

using BFP arithmetic[7]. For a jf point FFT, this

realization,

(b)

=EX H 43 HASPEA1E 97
Sub-block Quiput anantisga}
bufter of
size
M=L+P-1
M paint X) M point IFFT S
FFT {Last P tenns)
W(l‘?)
X I)ch)
MM point
IF¥FT
M pmnt
FFT
_ Compute
¥ w(j+1. @,
{S‘E‘E‘}Eﬂ ~ from
v ¢
[
(D
.
4
Set tast (P-1) Add (L-1) zeros
elanety zero at the fromt
M pomt
IFFT
- M point
> rFr |
a3 1. ek BFP 7|Ht ABLS ¢2|&el 1% 73

Fast implementation of the proposed BFP-based
BLMS Algorithm

means that in each of the log,M stages, both the
real and the imaginary parts of all input samples
are jointly scaled up/down by the same factor to
prevent overflow and at the same time, to make
better usage of the available dynamic range, at

the output of the stage. The shift on X(A),
k=0,1, ..,
be absorbed in the up/down scaling processes
present in the M point FFT preceding it and the
M point IFFT following it.

M—1 by 25+ as shown in Fig. 1 can

IV. Complexity Issues
The proposed schemes rely mostly on FxP
arithmetic,
much less than that of their FP based counterparts.
For example, to compute the filter output in Table 1,
L "Multiply and Accumulate (MAC)”

resulting in computational complexities

operations

98

(FxP) are needed to evaluate () and at the most,
one exponent addition operation to compute the
exponent. ex _ouf(j). In FP, this would require L
FP-based MAC operations. Note that given three
numbers in FP (normalized) format: A= 4%,

B=R% (=% the MAC operation A-+BC
requires the following steps: (i) e,te, ie, Exponent
Addition (EA), (i) (EC)
between e, and e,te, (i) Shifting either "4 or
"B G (iv) FxP-based MAC, and finally, (v)
renormalization, requiring shift and exponent addition.
In other words, in FP, computation of 4(z) will
require the following additional operations over the
BFP-based realization: (a) 97 shifts (assuming
availability of single cycle barrel shifters), (b} L EC,
and, (c) 9I—1 EA. Similar advantages exist in
weight updating also. Table 2 provides a comparative

Exponent Comparison

account of the two approaches in terms of number of
iteration. Note that the
number of additional operations required under FP
increases linearly with both the filter length L and
the subblock length P . It is easy to verify from
Table 2 that given a low cost, simple FxP processor

operations required per

with single cycle MAC and barrel shifter units, the
proposed scheme is about six times faster than a FP
based implementation, for moderately large values of
L and P. '

For the algorithm proposed in Fig. 1, similar
computational advantages exist over the conventional
FP based FBLMS algorithm. As the
computational block here is M-point FFT/IFFT, we
consider a typical butterfly computation stage that
takes as input X, () and X,{(@ and performs the

following computation :

X hd=Wy X ()

major

X ii(0=X,(0X,(®;
o
X1 @=X,(0—X (@), where Wy=e M In

a FP treatment, both the real and the imaginary parts
of X, (», X,(@ and W8, are represented in

normalized FP format, resulting in a total of 4 MAC
(FxP), 14 shift, 12 EA, 6 EC and 4 addition (FxP)

Realization of Block LMS Algorithm based on Block Floating Point

(98)

ol g 2l

operations per butterfly. In BFP[7], however, both the
real and imaginary parts of the above quantities are
in FxP format and the input quantities of all the
butterflies in each stage are scaled up/down by the
same number. This gives rise to 4 MAC (FxP), 4
additions and 4 shifts per butterfly, along with one
EA for each stage of the FFT. Assuming M to be a

power of 2, i.e.,, M=2 7, there are 4 stages in each

M
M-point FFT/IFFT, each having 9 butterflies.

and also taking into account the
FFT addition

multiplication, we obtain a comparative accourit of the

From this

complexities involved in and

two approaches in terms of number of operations
required per sub-block. This is given in Table 3.
Once again, for moderately large values of Jf, it is
easily seen that the proposed scheme of Fig. 1 is

between three to four times faster than a FP based
FBLMS algorithm.

V. Conclusion The BLMS algorithm is
presented

The BLMS algorithm is presented in a BFP

E 2. FP 49 BFP 7|t BLMS &12|& F¢ie 8|

Table 2. A Comparison between the BFP vis-a-vis the
FP-based realizations of the BLMS algorithm.
(MAC : multiply and accumulate, MC : magnitude
check, EC: exponent comparison, EA: exponent

addition)

o O
IR

(a) 77 of gtE o 23== i F
{a) Number of operations required per iteration for weight

updating

MAC | Shift MC EC EA
BFP | (L+1)P| P+L L Nil 1
FP | (L+1P |@L+DP| Nil LP |(2L+2)P

(b WElRE 2% W & 275E oy 3%

(b) Number of operations required per iteration for filtering

MAC Shift EC EA
BFP L Nil Nil 1
P L 2L L 2L

20064 18 MXA3&s =N M43 ASPEHA1 S

E 3 FP ¥ BFP Z|gt BLMS ¢xe2|& T8l vl
H2E25E AN 35

A Comparison between the BFP vis-a-vis the
FP-based realizations of the BLMS algorithm.,

Number of operations per sub-block are shown
(M=L+P—-1. r=log M.

Table 3.

MAC | Shift | EC | EA | Add | MC
12Mr+ | 12Mr+ . 12Mr+
BFP | a1 3 Nil 6r oM L
pp | 10Mr [35Mr+ [15Mr+ |30Mr+ | 10Mr+ | o
sM | 16M | 6M | 18M | 2M !

V. Conclusion The BLMS algorithm is
presented

The BLMS algorithm is presented in a BFP
framework that ensures simple FxP based operations
in most of the computations while maintaining a FP
like wide dynamic range via a block exponent. Care
is also taken to prevent overflow by a new upper
bound on the step size y and a dynamic scaling of
the data. A faster ‘implementation of the proposed
scheme is developed by suitable modification of the
FFT based FBLMS algorithm,

i2ngs

[1] K R Ralev and P. H Bauer, "Realization of
Block Floating Point Digital Filters and
Application to Block Implementations,” IEEE
Trans. Signal Processing, vol. 47, no. 4, pp.
1076-1086, April 1999.

K. Kalliojarvi and J. Astola, "Roundoff Errors
in Block-Floating-Point Systems,” IEEE Trans.
Signal Processing, vol. 44, no. 4, pp. 783-790,
April 199.

P. H Bauer, "Absolute Error Bounds for Block
Floating Point Direct form Digital Filters,” IEEE
Trans. Signal Processing, vol. 43, no. 8 pp.
1994-1996, Aug. 1995.

S. Sridharan and G. Dickman, "Block floating
point implementation of digital filters using the
DSP56000,” Microprocess. Microsyst., vol. 12, no.
6, pp. 299-308, July-Aug. 1938,

S. Sridharan and D. Williamson, “Implementation
of high order direct form digital filter
structures,” IEEE Trans. Circuits Syst, vol
CAS-33, pp. 818-822, Aug. 1986.

(2]

(3]

(4]

[5]

(99

99

[6] F. J. Taylor, "Block Floating Point Distributed

Filters,” IEEE Trans. = Circuits Syst, vol
CAS-31, pp. 300-304, Mar. 1984.
[7] David Elam and Cesar Lovescu, "A Block

Floating Point Implementation for an N-Point

FFT on the TMS320C55X DSP”, Texas

Instruments Application Report, SPRA948, Sept.,

2003. o

E. Bidet, D. Castelain, C. Joanblanq and P. Senn,

"A Fast Single-Chip Implemntation of 8192

Complex Point FFT", IEEE]J. Sol. State Circs,,

Vol. 30, No. 3, pp. 300-305, March, 1995.

A. Erickson and B. Fagin, "Calculating FHT in

Hardware”, IEEE Trans. Signal Processing, vol.

40, pp. 1341-1353, June 1992.

f10] A. Mitra, M. Chakraborty and H. Sakai, "A
Block Floating Point Treatment to the LMS
Algorithm : Efficient Realization and a Roundoff
Error Analysis”, to appear in the IEEE Trans.
Signal Processing; also appeared in Proc.
ICASSP 2003, Hong Kong, 2003.

[111]A. Mitra and M. Chakraborty, "The NLMS
Algorithm in Block Floating Point Format”,
IEEE Signal Process. Letters, pp. 301-304,
March 2004.

{12] M. Chakraborty and A. Mitra, "A Block Floating
Point Realization of the Gradient Adaptive
Lattice Filter”, IEEE Signal Process. Letters, pp.
265-268, April, 2005.

[13]1 S. Haykin, Adaptive Filter Theory, Englewood

© (Cliffs, NJ: Prentice-Hall, 1936.

8]

[9]

100

| Kwang-Jae Lee (B3 9)

He received the B.S. and M.S.
degrees in electronic engineering
from Chonbuk National
University -in 1986, 1990
B respectively. He i1s currently a
H full time lecturer in Hanlyo

University.

His research interests include the areas of
mobile communications, UWB, and channel
coding.

Mrityunjoy Chakraborty (73 3] €)
Department of Electronics and
Electrical Communication
Engineering, Indian Institute of
Technology, Kharagpur, INDIA.

Realization of Block LMS Algorithm based on Block Floating Point

X KA

(100)

ol &M <

Ju-Yong Park (23 ¢)
He received the B.S., M.S., and

Ph.D. degrees in electronics

engineering from Chonbuk

National University, Chonbuk,
| Korea, in 1982, 1986, and 1994,
1 respectively.

Since 1991, he has been an associate professor
with the Department of Electronics and
Multimedia Engineering at Seonam University,
Chonbuk, Korea.

His current research interests include wireless
communications, WCDMA, coding, and ATM
networks. ’

Moon-Ho Lee (B3 ¢)
He received the B.S. and M.S.

degree both in Electrical
Engineering from the Chonbuk
National Umniversity, Korea, in

1967 and 1976, respectively, and
the Ph.D degree in -electronics
from the Chonnam National

engineering
University in 1984 and the University of Tokyo,
Japan, in 1990.

From 1970 to 1980, he was a chief engineer with
Namyang Moonhwa Broadcasting. Since 1980,
he has been a professor with the Department of
Information and Communication and a Director

with the Institute of Information and
Communication, both at Chonbuk National
University. His research interests include the
multidimensional source and channel coding,
mobile communication, and image processing.

