DOI QR코드

DOI QR Code

Self-assembly directed synthesis of tubular conducting polymer inside the channels of MCM-41

  • Showkat, Ali Md. (Department of Chemistry Graduate School, Kyungpook National University) ;
  • Lee, Kwang-Pill (Department of Chemistry Graduate School, Kyungpook National University) ;
  • Gopalan, Anantha Iyengar (Department of Chemistry Graduate School, Kyungpook National University) ;
  • Reddy, K. Raghava (Department of Chemistry Graduate School, Kyungpook National University) ;
  • Kim, Sang-Ho (Department of Chemistry Graduate School, Kyungpook National University) ;
  • Choi, Seong-Ho (Department of Chemistry, Hannam university)
  • Published : 2006.06.27

Abstract

Diphenyl amine (DPA) was polymerized inside the channels of the mesoporous silica (MCM-41). MCM-41 (C) and MCM-41 (D) were prepared with cetyltrimethyl ammonium bromide (CTAB) and dodecyltrimethyl ammonium bromide (DTAB), respectively and used as hosts. Initially, the self assembly of DPA inside the pores of MCM-41 was made in ${\beta}$-naphthalene sulfonic acid (NSA) medium and subsequently poly (diphenylamine), PDPA was formed by oxidative polymerization. $N_2$ adsorption-desorption measurements of PDPA loaded MCM-41 (C) and MCM-41 (D) show variations in pore volume and surface area between them. A tubular form of poly (diphenylamine), PDPA was envisaged to form in the pores of MCM-41 and supported by high resolution transmission microscopy. The presence of PDPA inside the channel of MCM-41 was further confirmed by FTIR spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction.

Keywords

References

  1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. C. Beck, Nature., 359, 710-712 (1992) https://doi.org/10.1038/359710a0
  2. F. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. Mccullen, J. B. Higgins, J. L. A. Schlenker, J. Am. Chem. Soc., 114, 10834-10843 (1992) https://doi.org/10.1021/ja00053a020
  3. B. H. Van, E. M. Flanigen, P. A. Jacobs, J. C. Jansen, Eds. Introduction to Zeolite Science and Practice; Elsevier: Amsterdam, Netherlands, 137 (2001)
  4. E. W. Hansen, F. Courivaud, A. Karlsson, S. Kolboe and M. Stocker, Micropor. Mesopor. Mater., 3, 309- 320 (1998)
  5. M. Grun, A. Kurganov, S. Schacht, F. Schuth, K. Unger, J. Chromatography A., 740, 1-9 (1996) https://doi.org/10.1016/0021-9673(96)00205-1
  6. M. Grun, I. Lauer, K. Unger, Adv. Mater., 9, 254-257 (1997) https://doi.org/10.1002/adma.19970090317
  7. A. Corma, V. Fornes, M. Navarro, J. Perezpariente, J. Catal., 148, 569-574 (1994) https://doi.org/10.1006/jcat.1994.1243
  8. S. Morin, P. Ayrault, E. Mouahid, N. Gnep, M. Guisnet, Appl. Catal. A., 159, 317-331 (1997) https://doi.org/10.1016/S0926-860X(97)00057-4
  9. A. Corma, Chem.Rev., 97, 2373-2420 (1997) https://doi.org/10.1021/cr960406n
  10. M. Climent, A. Corma, R. Guil-Lopez, S. Iborra, J. Primo, J .Catal., 175, 70-79 (1998) https://doi.org/10.1006/jcat.1998.2005
  11. K. R. Kloetstra, H. V. Bekkum, J. Chem. Soc. Chem. Commun., 1005-1006, (1995)
  12. C. B. Murray, C. R. Kagan, M. G. Bawendi, Science., 267, 1335-1338 (1995)
  13. S. Mintova, N. H Olson, V. Valtchev, and T. Bein, Science., 283, 958-960 (1999) https://doi.org/10.1126/science.283.5404.958
  14. C. G. Wu and T. Bein, Science., 264, 1757-1759 (1994)
  15. F. Blatter and K. W. Blazey, J. Phys. Chem. Solids., 52, 629-633 (1991) https://doi.org/10.1016/0022-3697(91)90158-V
  16. T. J. Bandosz, Chem. Mater., 8, 2023 -2029 (1996) https://doi.org/10.1021/cm960233i
  17. H. Masuda and Fukuda, Science., 268, 1466-1469 (1995) https://doi.org/10.1126/science.268.5216.1466
  18. J. N. Weber, E. W. White, J. L. Zik, Nature., 233, 337- 339 (1971) https://doi.org/10.1038/233337a0
  19. R. L. White, J. N. Weber, E. W. White, Science., 176, 922-924 (1972) https://doi.org/10.1126/science.176.4037.922
  20. D. M. Roy and S. K. Linnehan, Nature., 247, 220-222 (1974) https://doi.org/10.1038/247220a0
  21. C. R. Martin, Science., 309, 67- 68 (1995) https://doi.org/10.1126/science.1114663
  22. B. Kshama, Jirage, C. John, Hulteen and C. R. Martin, Science., 278, 655-658 (1997) https://doi.org/10.1126/science.278.5338.655
  23. S. A. Johnson, E. S. Brigham, P. J. Ollivier, T. E. Mallouk, Chem. Mater., 9, 2448-2458 (1997) https://doi.org/10.1021/cm9703278
  24. S. A, Johnson, D. Khushalani, N. Coombs, T. E. Mallouk, G. A. Ozin, J. Mat. Chem., 8, 13-15 (1998) https://doi.org/10.1039/a706791g
  25. T. Bein, P. Enzel, Angew. Chem., 28, 1692-1694 (1989) https://doi.org/10.1002/anie.198916921
  26. P. Enzel, T. Bein, Chem. Commun., 18, 1326-1328 (1989)
  27. P. Enzel, T. Bein, J. Phys. Chem., 93, 6270-6272 (1989) https://doi.org/10.1021/j100354a004
  28. H. Landmesser, H. Kosslick, W. Stock, R. Fricks, Solid state ionics., 101, 271-277 (1997)
  29. C. P. Jaroniec, M. Kruck, Jaroniec, A. Sayari, J. Phys. Chem. B, 102, 5503-5510 (1998) https://doi.org/10.1021/jp981304z
  30. P. L. Liewellyn, U. Ciesla, H. Decher, R. Stadler, F. Schuteh, K. K. Unger, 'In zeolites and Related Microporous Materials' State of the Art,1994, Garmisch- Partenkirchen, Germany, 1994
  31. J. Weitkamp, H. G. Karge, H. Pfeifer, H, W. Holderlich, Eds.; Elsevier; Amsterdam, The Netherlands, 2013 (1994)
  32. M. Wan, J. Huang, J. Polym. Sci. A: Polym. Chem., 37, 151-157 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990101)37:1<37::AID-POLA5>3.0.CO;2-O
  33. Y. Shen, M. Wan, J. Polym. Sci. A: Polym. Chem., 37, 1443-1449 (1999)
  34. W. Zhixiang, Z. Zhiming and W. Meixiang, Langmuir., 18, 917-921 (2002) https://doi.org/10.1021/la0155799
  35. L. Zhang, M. Wan, Adv. Functional. Mate., 13, 815-820 (2003) https://doi.org/10.1002/adfm.200304458
  36. L. Z. Zhang, P. Cheng, D-Z. Liao, J. Chem. Phys., 117, 5959-5962 (2002) https://doi.org/10.1063/1.1510116
  37. B. H. Wouters, T. Chen, M. Dewilde, P. J. Grobet, Micropor. Mesopor. Mater., 44, 453-457 (2001) https://doi.org/10.1016/S1387-1811(01)00220-7
  38. M. S. Cho, H. J. Choi, K. K. Kim, W. S. Ahn, Macromol. Chem. Rapid. Commum., 23, 713-719 (2002) https://doi.org/10.1002/1521-3927(20020801)23:12<713::AID-MARC713>3.0.CO;2-Y
  39. H. Takahashi, B. L. Sasaki, C. Miyazaki, T. Kayns, S. Inayaki, Chem. Mater., 12, 3301-3305 (2000) https://doi.org/10.1021/cm000487a
  40. K. P. Lee, A. M. Showkat, A. Gopalan, S. H. Kim, S. H. Choi, Macromolecules., 38(2), 364-371 (2005) https://doi.org/10.1021/ma048703e
  41. A. M. Showkat, K. P. Lee, A. Gopalan, S. H. Kim, S. H Choi, Polymer., 46(6), 1804-1812 (2005)
  42. A. Harada, Li. J, M. Kamachi, Nature, 356, 325-327 (1992) https://doi.org/10.1038/356356a0
  43. V. Rajendran, A. Gopalan, T. Vasudevan and T-C. Wen, J. Electrochem. Soc., 147, 3014-3020 (2000) https://doi.org/10.1149/1.1393641
  44. G. Eimer, L. Pierella, G. Monti, O. Anunziation, Catal. Lett., 78, 65-75 (2000) https://doi.org/10.1023/A:1014924332500
  45. A. Griselda, Eimer, C. M. B. Gomez, L. B. Pierella and O. A. Anunziation, J. Colloid. Inter. Sci., 263, 400-407 (2003) https://doi.org/10.1016/S0021-9797(03)00038-9