폐석지내(廢石地內) 광(光) 저해(沮害)에 대한 사방오리나무 잎의 항산화(抗酸化) 보호(保護)

Antioxidant Protection of Alnus firma Sieb. et Zucc Leaves against Photoinhibition in Tailings

  • 한심희 (국립산림과학원 산림유전자원부) ;
  • 이재천 (국립산림과학원 산림유전자원부) ;
  • 이위영 (국립산림과학원 산림유전자원부) ;
  • 박영기 (국립산림과학원 산림유전자원부) ;
  • 오창영 (국립산림과학원 산림유전자원부) ;
  • 김종갑 (경상대학교 산림과학부)
  • Han, Sim-Hee (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Lee, Jae-Cheon (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Lee, Wi Young (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Park, Youngki (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Oh, Chang-Young (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kim, Jong-Kab (Faculty of Forest Science, Gyeongsang National University)
  • 투고 : 2006.01.10
  • 심사 : 2006.03.16
  • 발행 : 2006.03.31

초록

광 저해에 대한 보호 메커니즘을 구명하기 위하여, 폐석지내 선구수종인 사방오리나무를 대상으로 수목의 활력과 잎 발달 단계에 따라 잎 내 엽록소 형광, 엽록소와 카로테노이드 함량 및 항산화 효소 활성을 분석하였다. 활력이 높은 개체는 오후 12시에 활력이 낮은 개체는 오후 2시에 가장 낮은 광화학효율을 나타냈으며, 두 개체 모두 오후 6시에 광화학효율을 완전히 회복하였다. 성숙 잎은 어린잎보다 전 측정 시간에 걸쳐 광화학 효율이 높았다. 엽록소, 베타카로틴 및 크산토필 함량은 활력이 높은 개체와 성숙한 잎에서 높았으며, 특히 크산토필 함량은 활력이 높은 개체가 활력이 낮은 개체보다 어린잎에서는 8.7배, 성숙 잎에서는 18.8배 높았다. 항산화효소는 SOD만이 활력이 높은 개체에서 잎의 연령 간 활성 차이를 나타냈다.

To explore the development of photoprotective mechanisms, chlorophyll a fluorescence, chlorophyll and carotenoid content and antioxidant enzyme activity in leaves were investigated at different vitality and leaf development stage of Alnus firma Sieb. et Zucc under tailing condition. The lowest maximum photochemical efficiency (Fv/Fm) in leaves of high- and low-vitality plants were observed at 12:00 pm and 2:00 pm, respectively, and the decrease of Fv/Fm in leaves of all plants were almost completely restored at 6:00 pm. Fv/Fm of full-expansion leaves was higher than that of emergence leaves at all measurement time. Chlorophyll, ${\beta}$-carotene and xanthophyll content in leaves of high-vitality plants and in full-expansion leaves were higher when compared to those of low-vitality plants and emergence leaves. Especially xanthophyll contents in both stage leaves of high-vitality plants were higher than 8.7 times and 18.8 times those of low-vitality plants. Only SOD activity was seen significant difference between leaf stage in leaves of high-vitality plants.

키워드

참고문헌

  1. 오창영, 이경준, 이재천, 한심희. 2004. Cd 처리에 대한 박달나무의 가계간 생리적 피해 및 항산화 반응 차이. 한국임학회지 428-435
  2. 이재천, 오창영, 한심희, 김판기. 2005. 오존 노출 시간에 따른 버즘나무와 백합나무의 광합성과 SOD 활성 변화. 한국농림기상학회지 156-163
  3. 한심희, 현정오, 이경준, 조덕현. 1998. 아연폐광산 토양의 중금속 (Cd, Cu, Zn, Pb) 오염에 따른 5개 수종의 부위별 중금속 축적. 한국임학회지 87: 466-474
  4. Asada, K, Takahashi, M. and Nagate, M. 1974. Assay and inhibitors of spinach superoxide dismutase. Agricultural and Biological Chemistry 38: 471-473 https://doi.org/10.1271/bbb1961.38.471
  5. Asada, K. 1999. The water-water cycle in chloroplast: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology 50: 601-639 https://doi.org/10.1146/annurev.arplant.50.1.601
  6. Beauchamp, C. and Fridovichi, I. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44: 276-287 https://doi.org/10.1016/0003-2697(71)90370-8
  7. Biehler, K. and Fock, H. 1996. Evidence for the contribution of the Mehler peroxidase reaction in dissipating excess electrons in drought-stressed wheat. Plant Physiology 112: 265-272 https://doi.org/10.1104/pp.112.1.265
  8. Carlberg, I. and Mannervik, B. 1985. Glutathione Reductase. Methods in Enzymology 113: 485-490
  9. Demmig-Adams, B. 1990. Carotenoids and photoprotection in plants: a role of xanthophyll zeaxanthin. Biochimica et Biophysica Acta 1020: 1-24 https://doi.org/10.1016/0005-2728(90)90088-L
  10. Foyer, C.H. and Halliwell, B. 1976. The presence of glutathione and glutathione reductase in chloroplasts: proposed role in ascorbic acid metabolism. Plant 133: 21-25 https://doi.org/10.1007/BF00386001
  11. Han, S.-H., Lee, J.-C., Jang, S.-S. and Kim, P.-G. 2004. Com posted sewage sludge can improve the physiological properties of Betula schmidtii grown in tailings. Journal of Plant Biology 47: 99-104 https://doi.org/10.1007/BF03030638
  12. Hiscox, J.D. and Israelstam, G.F. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57: 1332-1334 https://doi.org/10.1139/b79-163
  13. Hossner, L.R. and Hons, F.M. 1992: Reclamation of mine tailings. pp. 311-348. In: BA Stewart, ed. Advances in Soil Science. Vol. 17 . Springer-Verlag, New York
  14. Jiang, C.D., Gao, H.Y., Zou, Q., Jiang, G.M. and Li, L.H. 2006. Leaf orientation, photorespiration and xanthophyll cycle protect young soybean leaves against high irradiance in field. Environmental and Experimental Botany 55: 87-96 https://doi.org/10.1016/j.envexpbot.2004.10.003
  15. Jiang, C.D., Li, P.M., Gao, H.Y., Zou, Q. Jiang, G.M. and Li, L.H. 2005. Enhanced photoprotection at the early stages of leaf expansion in field-grown soybean plants. Plant Science 168: 911-919 https://doi.org/10.1016/j.plantsci.2004.11.004
  16. Jung, S. and Steffen, K.L. 1997. Influence of photosynthetic photon flux densities before and during long-term chilling on xanthophyll cycle and chlorophyll fluorescence quenching in leaves of tomato (Lycopersicon hirsuturn). Physiologia Plantarum 100: 958-966 https://doi.org/10.1111/j.1399-3054.1997.tb00023.x
  17. Kulheim, C., Agren, J. and Jansson, S. 2002. Rapid regulation of light harvesting and plant fitness in the field. Science 297: 91-93 https://doi.org/10.1126/science.1072359
  18. Lichtenthaler, H.K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148: 350-382 https://doi.org/10.1016/0076-6879(87)48036-1
  19. Logan, T.J. 1992. Chemical degradation of soil. pp. 1335. In: B.A. Stewart, ed. Advances in Soil Science. Vol. 17. Springer-Verlag, New York
  20. Loggini, B., Scartazza, A., Brugnoli, E. and Navari-Izzo, F. 1999. Antioxidative defence system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiology 119: 1091-1099 https://doi.org/10.1104/pp.119.3.1091
  21. Ma, Y.Z., Holt, N.E. Li, X.P. Niyogi, K.K. and Fleming, G.R. 2003. Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting. Proc. Natl. Acad. Sci. 100: 4377-4382
  22. Melis, A. 1999. Photosystem II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo. Trends in Plant Science 4: 130-135 https://doi.org/10.1016/S1360-1385(99)01387-4
  23. Minkov I.N., Jahoubjan, G.T., Denev, I.D. and Toneva, V.T. 1999. Photooxidative stress in higher plants. pp. 499525. In: M. Pessrakli, ed. Handbook of Plant and Crop Stress, 2nd edition. Marcel Decker, New York, Basel
  24. Muller, P., Li, X.P. and Niyogi, K.K. 2001. Non-photochemical quenching. A response to excess light energy. Plant Physiology 125: 1558-1566 https://doi.org/10.1104/pp.125.4.1558
  25. Oncel, I., Yurdakulol, E., Keles, Y., Kurtm, L. and Yildiz, A. 2004. Role of antioxidant defence system and biochemical adaptation on stress tolerance of high mountain and steppe plants. Acta Oecologia 26: 211-218 https://doi.org/10.1016/j.actao.2004.04.004
  26. Osmond, C.B. 1994. What is photoinhibition? some insights from comparisons of shade and sun plants. pp. 124. In: N.R. Baker, and J.R Bowyer, ed. Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field. Bios Scientific. Oxford
  27. Prasil, O., Adir, N. and Ohad, I. 1992. Dynamic of PSII: Mechanism of photoinhibition and recovery process. pp. 293-348. In: J. Barber, ed. The Photosystems: Structure, Function and Molecular Biology. Elsevier, Amsterdam
  28. Schansker, G. and Van Rensen, J.J.S. 1999. Performance of active Photosystem II centers in photoinhibited pea leaves. Photosynthesis Research 62: 175-184 https://doi.org/10.1023/A:1006374707722
  29. Siefermann-Harms, D. 1987. The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiologia Plantarum 69: 561- 568 https://doi.org/10.1111/j.1399-3054.1987.tb09240.x
  30. Smirnoff, N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist 125: 27-58 https://doi.org/10.1111/j.1469-8137.1993.tb03863.x
  31. Webb, M.R. and Melis, A. 1995. Chloroplast response in Dunaliella salina to irradiance stress. Effect on thylakoid membrane protein assembly and function. Plant Physiology 107: 885-893 https://doi.org/10.1104/pp.107.3.885