초임계수에 의한 현사시나무의 당화 특성

Thermo-chemical Conversion of Poplar Wood (Populus alba × glandulosa) to Monomeric Sugars by Supercritical Water Treatment

  • 최준원 (국립산림과학원 화학미생물과) ;
  • 임현진 (충북대학교 목재.종이과학과) ;
  • 한규성 (충북대학교 목재.종이과학과) ;
  • 최돈하 (국립산림과학원 화학미생물과)
  • Choi, Joon-Weon (Div. of Wood Chemistry & Microbiology, Korea Forest Research Institute) ;
  • Lim, Hyun-Jin (Chungbuk National University) ;
  • Han, Kyu-Sung (Chungbuk National University) ;
  • Choi, Don-Ha (Div. of Wood Chemistry & Microbiology, Korea Forest Research Institute)
  • 투고 : 2006.07.24
  • 심사 : 2006.09.07
  • 발행 : 2006.11.25

초록

아임계 및 초임계수 특성에 따른 목질 바이오매스의 당화특성을 분석하기 위하여 물의 초임계 압력인 23 MPa로 고정하고 아임계 온도($325^{\circ}C$, $350^{\circ}C$)와 초임계 온도($380^{\circ}C$, $400^{\circ}C$, $425^{\circ}C$)에서 현사시나무 목분을 각각 60초 동안 처리하였다. 생성된 현사시 목분의 분해산물에는 액상과 고형분의 분해산물이 섞여 있었다. 각 처리조건에 따른 목분의 분해율은 처리 온도가 상승함에 따라 증가하였으며 초임계 온도인 $425^{\circ}C$에서 최고 83.1%의 분해율을 나타냈다. 아임계 및 초임계수 분해에 의해서 생성된 단당류는 액상의 분해산물을 대상으로 고성능 음이온 교환 크로마토그래프(HPAEC)를 이용하여 분석하였다. 목질바이오매스의 초임계수 분해과정에서 처리온도가 높아지면서 단당류 수율은 증가하는 경향을 보였으며, $425^{\circ}C$에서 가장 높은 7.3%의 단당류 수율을 나타내었다. 아임계 온도 범위에서는 현사시나무의 섬유소 성분 중에서 자일란이 우선적으로 분해되어 자일로스의 생성비율이 비교적 높았으며, 처리온도가 높아지면서 셀룰로오스의 분해에 의한 글루코오스 생성율이 급격히 상승하였다.

To characterize thermo-chemical feature of su gar conversion of woody biomass poplar wood (Populus alba${\times}$glandulosa ) by sub- and supercritical water was treated for 60s under subcritical (23 MPa, 325 and $350^{\circ}C$) and supercritical (23 MPa, 380, 400, and $425^{\circ}C$) conditions, respectively. Among degradation products undegraded poplar wood solids existed in aqueous products. As the treatment temperature increased, the degradation of poplar wood was enhanced and reached up to 83.1% at $425^{\circ}C$. The monomeric sugars derived from fibers of poplar wood by sub- and supercritical treatment were analyzed by high performance anionic exchange chromatography (HPAEC). Under the subcritical temperature ranges, xylan, main hemicellulose component in poplar wood, was preferentially degraded to xylose, while cellulose degradation started at the transition zone between sub and supercritical conditions and was remarkably accelerated at the supercritical condition. The highest yield of monomeric sugars amounts to ca. 7.3% based on air dried wood weight (MC 10%) at $425^{\circ}C$.

키워드

참고문헌

  1. 최준원, 임현진, 한규성, 강하영, 최돈하. 2005. 초임계수에 의한 현사시 목분의 분해특성 및 분해산물 분석 임산에너지. 24: 39-46
  2. Chang, V. S. and M. T. Holtzapple. 2000. Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol. 84-86: 5-37 https://doi.org/10.1385/ABAB:84-86:1-9:5
  3. Ehara, K. and S. Saka. 2002. A Comparative Study on Chemical Conversion of Cellulose between the Batch-type and Flow-type Systems in Supercritical Water. Cellulose 9: 301-311 https://doi.org/10.1023/A:1021192711007
  4. Ehara, K. and S. Saka. 2005 Decomposition Behavior of Cellulose in Supercritical Water, Subcritical Water, and their Combined Treatments. J. Wood Sci. 51: 148-153 https://doi.org/10.1007/s10086-004-0626-2
  5. Ehara, K., S. Saka, and H. Kawamoto. 2002. Characterization of the lignin derived products from wood as treated in supercritical water. J. Wood Sci. 48: 320-325 https://doi.org/10.1007/BF00831354
  6. Goldstein I. S. 1980. The hydrolysis of wood. TAPPI. 63: 141-143
  7. Holzapfel W. B. 1969. Effect of pressure and temperature on the conductivity and ionic dissociation of water up to 100 kbar and $1000^{\circ}C$. J. Chem Phys. 50: 4424-4428 https://doi.org/10.1063/1.1670914
  8. Ishikawa Y. and S. Saka. 2001. Chemical conversion of cellulose as treated in supercritical methanol. Cellulose 8: 189-195 https://doi.org/10.1023/A:1013170020469
  9. Koshijima, T., T. Watanabe, and F. Yaku. 1989. Structure and properties of the lignin-carbohydrate complex as an amphipathic substance. In: Lignin, Properties and Materials. Eds: Glasser W. G. and Sarkanen S. American Chemical Society, Washington, DC. 11-28
  10. Kosikova B., D. Joniak, and L. Kosikova. 1979. On the properties of benzyl ether bonds in the Iignin-saccharidic complex isolated from spruce. Holzforschung 33: 11 - 14 https://doi.org/10.1515/hfsg.1979.33.1.11
  11. Parisi F. 1989. Advances in lignocellulosics hydrolysis and in the utilization of the carbohydrates. Adv. Biochem. Eng. Biotechnol. 38: 53-87
  12. Sasaki M., Z. Fang, Y. Fukushima, T. Adschiri, and K. Arai. 2000. Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Ind. Eng. Chem. Res. 39: 2883- 2890 https://doi.org/10.1021/ie990690j
  13. Sasaki M, B. Kabyemela, R. Malaluan, S. Hirose, N. Takeda, T. Adschiri, and K Arai. 1998. Cellulose Hydrolysis in Subcritical and Supercritical Water. J. Supercrit. Fluids 13: 261- 268 https://doi.org/10.1016/S0896-8446(98)00060-6
  14. Saka, S. and R. Konishi. 2001. Chemical conversion of biomass resources to useful chemicals and feuls by supercritical water treatment. In Progress in thermochemical biomass conversion Blackwell, Oxford. pp.1338-1348
  15. Takada, D., K. Ehara, and S. Saka. 2004. Gaschromatographic and mass spectrometric (GC-MS) analysis of lignin derived products from Cryptomeria japonica treated in super-critical water. J. Wood Sci. 50. 253-259