Comparative Analysis of Growth-Phase-Dependent Gene Expression in Virulent and Avirulent Streptococcus pneumoniae Using a High-Density DNA Microarray

  • Ko, Kwan Soo (Asian-Pacific Research Foundation for Infectious Diseases (ARFID)) ;
  • Park, Sulhee (Asian-Pacific Research Foundation for Infectious Diseases (ARFID)) ;
  • Oh, Won Sup (Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Suh, Ji-Yoeun (Asian-Pacific Research Foundation for Infectious Diseases (ARFID)) ;
  • Oh, TaeJeong (GenomicTree, Inc.) ;
  • Ahn, Sungwhan (GenomicTree, Inc.) ;
  • Chun, Jongsik (School of Life Sciences, Seoul National University) ;
  • Song, Jae-Hoon (Asian-Pacific Research Foundation for Infectious Diseases (ARFID))
  • Received : 2005.08.23
  • Accepted : 2005.11.25
  • Published : 2006.02.28

Abstract

The global pattern of growth-dependent gene expression in Streptococcus pneumoniae strains was evaluated using a high-density DNA microarray. Total RNAs obtained from an avirulent S. pneumoniae strain R6 and a virulent strain AMC96-6 were used to compare the expression patterns at seven time points (2.5, 3.5, 4.5, 5.5, 6.0, 6.5, and 8.0 h). The expression profile of strain R6 changed between log and stationary growth (the Log-Stat switch). There were clear differences between the growth-dependent gene expression profiles of the virulent and avirulent pneumococcal strains in 367 of 1,112 genes. Transcripts of genes associated with bacterial competence and capsular polysaccharide formation, as well as clpP and cbpA, were higher in the virulent strain. Our data suggest that late log or early stationary phase may be the most virulent phase of S. pneumoniae.

Keywords

Acknowledgement

Supported by : Ministry of Commerce, Industry and Energy

References

  1. Berry, A. M. and Paton, J. C. (2000) Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative virulence proteins. Infect. Immun. 68, 133−140 https://doi.org/10.1128/IAI.68.1.133-140.2000
  2. Conway, T. and Schoolnik G. K. (2003) Microarray expression profiling: capturing a genome-wide portrait of the transcriptome. Mol. Microbiol. 47, 879−889 https://doi.org/10.1046/j.1365-2958.2003.03338.x
  3. De Saizieu, A., Gardes, C., Flint, N., Wagner, C., Kamber, M., et al. (2000) Microarray-based identification of a novel Streptococcus pneumoniae regulon controlled by an autoinduced peptide. J. Bacteriol. 182, 4696−4703 https://doi.org/10.1128/JB.182.17.4696-4703.2000
  4. Dietrich, G., Kurz, S., Hűbner, C., Aepinus, C., Theiss, S., et al. (2003) Transcriptome analysis of Neisseria meningitidis during infection. J. Bacteriol. 185, 155−164 https://doi.org/10.1128/JB.185.1.155-164.2003
  5. Eriksson, S., Lucchini, S., Thompson, A., Rhen, M., and Hinton, J. C. D. (2003) Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol. Microbiol. 47, 103−118 https://doi.org/10.1046/j.1365-2958.2003.03313.x
  6. Hakenbeck, R., Balmelle, N., Weber, B., Gardes, C., Keck, W., et al. (2001) Mosaic genes and mosaic chromosome: intraand interspecies genomic variation of Streptococcus pneumoniae. Infect. Immun. 69, 2477−2486 https://doi.org/10.1128/IAI.69.4.2477-2486.2001
  7. Hava, D. L. and Camilli, A. (2002) Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol. Microbiol. 45, 1289−1405 https://doi.org/10.1046/j.1365-2958.2002.03091.x
  8. Hava, D. L., LeMieux, J., and Camilli, A. (2003) From nose to lung: the regulation behind Streptococcus pneumoniae virulence factors. Mol. Microbiol. 50, 1103−1110 https://doi.org/10.1046/j.1365-2958.2003.03764.x
  9. Hoskins, J., Alborn Jr., W. E., Arnold, J., Blaszczak, L. C., Burgett, S., et al. (2001) Genome of the bacterium Streptococcus pneumoniae strain R6. J. Bacteriol. 183, 5709−5717 https://doi.org/10.1128/JB.183.19.5709-5717.2001
  10. Joyce, E. A., Kawale, A., Censini, S., Kim, C. C., Covacci, A., et al. (2004) LuxS is required for persistent pneumococcal carriage and expression of virulence and biosynthesis genes. Infect. Immun. 72, 2964−2975 https://doi.org/10.1128/IAI.72.5.2964-2975.2004
  11. Kim, J. O. and Weiser, J. N. (1998) Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae. J. Infect. Dis. 177, 368−377 https://doi.org/10.1086/514205
  12. Lau, G. W., Haataja, S., Lonetto, M., Kensit, S. E., Marra, A., et al. (2001) A functional genomic analysis of type 3 Streptococcus pneumoniae virulence. Mol. Microbiol. 40, 555−571 https://doi.org/10.1046/j.1365-2958.2001.02335.x
  13. Lee, H., Hur, C. G., Oh, C. J., Kim, H. B., Park, S. Y., et al. (2004) Analysis of the root nodule-enhanced transcriptome in soybean. Mol. Cells 18, 53−62
  14. Liang, F. T., Nelson, F. K., and Fikrig, E. (2002) Molecular adaptation of Borrelia burgdoferi in the murine host. J. Exp. Med. 196, 275−280 https://doi.org/10.1084/jem.20020770
  15. Merrell, D. S., Thompson, L. J., Kim, C. C., Mitchell, H., Tompkin, L. S., et al. (2003) Growth phase-dependent response of Helicobacter pylori to iron starvation. Infect. Immun. 71, 6510−6525 https://doi.org/10.1128/IAI.71.11.6510-6525.2003
  16. Ogunniyi, A. D., Giammarinaro, P., and Paton, J. C. (2002) The genes encoding virulence-associated proteins and the capsule of Streptococcus pneumoniae are upregulated and differentially expressed in vivo. Microbiology 148, 2045−2053
  17. Orihuela, C. J., Radin, J. N., Sublett, J. E., Gao, G., Kaushal, D., et al. (2004a) Microarray analysis of pneumococcal gene expression during invasive disease. Infect. Immun. 72, 5582−5596 https://doi.org/10.1128/IAI.72.10.5582-5596.2004
  18. Orihuela, C. J., Gao, G., Francis, K. P., Yu, J., and Tuomanen, E. I. (2004b) Tissue-specific contributions of pneumococcal virulence factors to pathogenesis. J. Infect. Dis. 190, 1661−1669 https://doi.org/10.1086/424596
  19. Paton, J. C. (1998) Novel pneumococcal surface proteins: role in virulence and vaccine potential. Trends Microbiol. 6, 85−87
  20. Paustian, M. L., May, B. J., and Kapur, V. (2001) Pasterella multocida gene expression in response to iron limitation. Infect. Immun. 69, 4109−4115 https://doi.org/10.1128/IAI.69.6.4109-4115.2001
  21. Peterson, S. N., Sung, C. K., Cline, R., Desai, B. V., Snesrud, E. C., et al. (2004) Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol. Microbiol. 52, 1051−1070
  22. Polisi, A., Pontiggia, A., Feger, G., Altieri, M., Mottl, H., et al. (1998) Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect. Immun. 66, 5620−5629
  23. Rimini, R., Jansson, B., Feger, G., Roberts, T. C., de Francesco, M., et al. (2000) Global analysis of transcription kinetics during competence development in Streptococcus pneumoniae using high density DNA arrays. Mol. Microbiol. 36, 1279−1292 https://doi.org/10.1046/j.1365-2958.2000.01931.x
  24. Ring, A. and Tuomanen, E. (2000) Host cell invasion by Streptococcus pneumoniae. Subcell. Biochem. 33, 125−135
  25. Robertson, G. T., Ng, W. L., Foley, J., Gilmour, R., and Winkler, M. E. (2002) Global transcriptional analysis of clpP mutations of type2 Streptococcus pneumoniae and their effects on physiology and virulence. J. Bacteriol. 184, 3508−3520 https://doi.org/10.1128/JB.184.13.3508-3520.2002
  26. Rosenow, C., Ryan, P., Weiser, J. N., Johnson, S., Fontan, P., et al. (1997) Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Mol. Microbiol. 25, 819−829 https://doi.org/10.1111/j.1365-2958.1997.mmi494.x
  27. Schneider, W. P., Ho, S. K., Christine, J., Yao, M., Marra, A., et al. (2002) Virulence gene identification by differential fluorescence induction analysis of Staphylococcus aureus gene expression during infection-simulating culture. Infect. Immun. 70, 1326−1333 https://doi.org/10.1128/IAI.70.3.1326-1333.2002
  28. Song, J. H., Ko, K. S., Lee, J. Y., Baek, J. Y., Oh, W. S., et al. (2005) Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis. Mol. Cells 19, 365−374
  29. Tani, T. H., Khodursky, A., Blumenthal, R. M., Brwon, P. O., and Matthews R. G. (2002) Adaptation to famine: a family of stationary-phase genes revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 99, 13471−13476
  30. Tatusov, R. L., Koonin, E. V., and Lipman, D. J. (1997) A genomic perspective on protein families. Science 278, 631−637 https://doi.org/10.1126/science.278.5338.631
  31. Tettelin, H., Nelson, K. E., Paulsen, I. T., Eisen, J. A., Read, T. D., et al. (2001) Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293, 498−506 https://doi.org/10.1126/science.1061217
  32. Thompson, L. J., Merrell, D. S., Neilan, B. A., Mitchell, H., Lee, A., et al. (2003) Gene expression profiling of Helicobacter pylori reveals a growth-phase-dependent switch in virulence gene expression. Infect. Immun. 71, 2643−2655 https://doi.org/10.1128/IAI.71.5.2643-2655.2003
  33. Tuomanen, E. I., Austrian, R., and Masure, A. R. (1995) Pathogenesis of pneumococcal infection. N. Engl. J. Med. 332, 1280−1284 https://doi.org/10.1056/NEJM199505113321907
  34. Yother, J. and Briles, D. E. (1992) Structural properties and evolutionary relationships of PspA, a surface protein of Streptococcus pneumoniae, as revealed by sequence analysis. J. Bacteriol. 174, 601−609