Surface Acoustic Wave Characteristics of Piezoelectric Materials and Protein Immobilization

압전 재료의 탄성표면파 특성과 단백질의 고정화

  • Chong, Woo-Suk (Division of Bionics and Bioinformatics, College of Engineering, Chonbuk National University) ;
  • Hong, Chul-Un (Division of Bionics and Bioinformatics, College of Engineering, Chonbuk National University) ;
  • Kim, Gi-Beum (Division of Bionics and Bioinformatics, College of Engineering, Chonbuk National University)
  • 정우석 (전북대학교 공과대학 생체정보공학부) ;
  • 홍철운 (전북대학교 공과대학 생체정보공학부) ;
  • 김기범 (전북대학교 공과대학 생체정보공학부)
  • Received : 2005.11.11
  • Accepted : 2006.01.20
  • Published : 2006.04.30

Abstract

In this study, in using a piezoelectric material of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ (PMN-PT), which has a high electromechanical coupling coefficient, we have tried to study about this material can be practically available as a new biosensor to detect protein by using surface acoustic wave (SAW). As the results, the filtering of the center frequency of the PMN-PT substrate is a superior result to that of the $LiTaO_3$ (LT) substrate, but the result was not completely satisfactory. Also this study attempts to develop a sensing method to detect mismatched DNA in order to diagnose cancer. We could directly immobilize the MutS to the NTA using the EDC solution. But, we immobilized MutS using nickel and it is judged that is more effective method to detect mismatched DNA.

본 연구에서는 전기적 결합 계수가 큰 PMN-PT 압전 재료를 사용하여 탄성표면파를 발진시켜 단백질을 검출할 수 있는 새로운 바이오센서로써 이용 가능성을 확인하고자 시도하였다. 실험결과 PMN-PT 압전 재료의 중심 주파수 필터링은 LT 압전 재료보다 우수하였지만, 만족할만한 결과를 얻을 수는 없었다. 또한, 본 연구에서는 위암을 일으키는 mismatched DNA를 검출하기 위한 방법을 개발하고자 하였다. 그 결과 EDC 용액을 사용하여 NTA에 MutS를 고정화 하였다. 그러나 Ni(니켈)을 사용하여 MutS를 고정화하여 mismatched DNA를 측정하는 것이 더 효과적인 방법이라 판단된다.

Keywords

Acknowledgement

Supported by : 보건복지부

References

  1. Wolfbesis, O. S., Fiber Optic Chemical Sensors and Biosensors, 1, CRC Press, Boca Ration, FL(1991)
  2. Hughes, R., Ricco, A., Butler, M. and Martin, S., 'Chemical Microsensors,' Science, 254, 74-80(1991) https://doi.org/10.1126/science.254.5028.74
  3. Scller, F. W., Schnbertm, F. and Fedrowits, T., Frontiers in Biosensors, vol. and, Birkhauser, Berlin(1996)
  4. Eggins, B. R., Biosensors: an Introduction, John Wiley & Sons and B. G. Teubner Publishers, Stuttgart(1996)
  5. Mastrangelo, C. H., 'Adhension-Related Failure Mechanisms in Micromechanical Devices,' Trib. Lett., 3, 223(1997) https://doi.org/10.1023/A:1019133222401
  6. Janata, J., Josowicz, M., Vanysek, P. and DeVaney, D. M., 'Chemical Sensors,' Anal. Chem., 70, 179R-208R(1998) https://doi.org/10.1021/a1980010w
  7. Rogers, K. R., Biosensors technology for environmental measurment. In: Meyers, R. A., editer, Encyclopedia of Environmental Analysis and Remediation, John Wiley & Sons, New York(1998)
  8. Kim, G. B., Chong, W. S., Kwon, T. K., Hohkawa, K., Hong, C. U. and Kim, N. G., 'Basic Study to Develop Biosensors Using Surface Acoustic Wave,' JJAP, 44(4B), 2868-2873(2005)
  9. Thompson, M. and Stone, D. C., 'Surface-launched Acoustic Wave Sensors,' John Wiley & Sons, New York(1997)