• 제목/요약/키워드: Surface Acoustic Wave Biosensor

검색결과 5건 처리시간 0.026초

ELO 기술을 이용한 표면 탄성파 바이오 센서의 개발 (Development of Surface Acoustic Wave Biosensor Using Epitaxial Lift-Off(ELO) Technology)

  • 김기범;정우석;권대규;김남균;홍철운
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.447-449
    • /
    • 2004
  • The purpose of this study is measured surface acoustic wave(SAW) characteristics to confirm utilization possibility as SAW sensor using new Pb(Mg$_{1}$3/Nb$_{2}$3/) $O_3$-PbTiO$_3$ (PMN-PT) piezoelectric substrate. We have tried to see if the material can be practically available as a new surface acoustic wave (SAW) biosensor to detect protein. The experimental results clarified that the frequency filtering of the central frequency of the PMN-PT substrate is a superior result to that of the LiTaO$_3$ (LT) substrate, but the result was not completely satisfactory. We know there is a problem in the design of inter-digital transducer (IDT) pattern. The waves transferred through the input terminal forms SAW which is sure to be transferred to the direction of the output terminal and the backward direction of the input terminal. This reflected wave is reiterated with SAW, which is transferred to the output direction, and so the frequency filtering gives a not good result. The electromechanical coupling coefficient of the PMN-PT substrate is excellent, and we can use it as a SAW sensor, in the near future, provided that there will be a new IDT design to increase the frequency filtering.

  • PDF

압전 재료의 탄성표면파 특성과 단백질의 고정화 (Surface Acoustic Wave Characteristics of Piezoelectric Materials and Protein Immobilization)

  • 정우석;홍철운;김기범
    • Korean Chemical Engineering Research
    • /
    • 제44권2호
    • /
    • pp.166-171
    • /
    • 2006
  • 본 연구에서는 전기적 결합 계수가 큰 PMN-PT 압전 재료를 사용하여 탄성표면파를 발진시켜 단백질을 검출할 수 있는 새로운 바이오센서로써 이용 가능성을 확인하고자 시도하였다. 실험결과 PMN-PT 압전 재료의 중심 주파수 필터링은 LT 압전 재료보다 우수하였지만, 만족할만한 결과를 얻을 수는 없었다. 또한, 본 연구에서는 위암을 일으키는 mismatched DNA를 검출하기 위한 방법을 개발하고자 하였다. 그 결과 EDC 용액을 사용하여 NTA에 MutS를 고정화 하였다. 그러나 Ni(니켈)을 사용하여 MutS를 고정화하여 mismatched DNA를 측정하는 것이 더 효과적인 방법이라 판단된다.

무선/무전원 러브파 바이오센서 개발 (Development of wireless/battery-free Love wave biosensor)

  • 남민우;오해관;이기근;양상식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1545_1546
    • /
    • 2009
  • This paper reports a novel wireless love-wave biosensor on $41^{\circ}$ YX $LiNbO_3$ piezoelectric substrate and $SiO_2$ guiding layer for Immunoglobulin G (IgG) detection by protein binding. Different from the traditional biosensors based on surface acoustic wave (SAW) oscillator structured by delay line/resonators, a 440MHz reflective delay line consists of SPUDTs and three reflectors placed on $41^{\circ}$ YX $LiNbO_3$ in a row was fabricated as the sensor element. Good linearity, reproducibility, and high sensitivity were observed in the IgG concentration range 1~65nM. Unique advantages as high sensitivity, passive and simple measurement system are present over currently available other biosensors.

  • PDF

A Biomolecular Sensing Platform Using RF Active System

  • Kim, Sang-Gyu;Lee, Hee-Jo;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • 제12권4호
    • /
    • pp.227-233
    • /
    • 2012
  • This paper describes a novel and compact biosensing platform using an RF active system. The proposed sensing system is based on the oscillation frequency deviation due to the biomolecular binding mechanism on a resonator. The impedance variation of the resonator, which is caused by a specific biomolecular interaction results in a corresponding change in the oscillation frequency of the oscillator so that this change is used for the discrimination of the biomolecular binding, along with concentration variation. Also, a Surface Acoustic Wave (SAW) filter is utilized in order to enhance the biosensing performance of our system. Because the oscillator operates at the skirt frequency range of the SAW filter, a small amount of oscillation frequency deviation is transformed into a large variation in the output amplitude. Next, a power detector is used to detect the amplitude variation and convert it to DC voltage. It was also found that the frequency response of the biosensing system changes linearly with three streptavidin concentrations. Therefore, we expect that the proposed RF biosensing system can be applied to bio/medical applications capable of detecting a nano-sized biomolecular interaction.