The influence of some intrauterine growth variables on neonatal blood pressure

태아기 자궁내 성장지표와 신생아 혈압과의 관련성

  • Min, Jungwon (Department of Preventive Medicine, College of Medicine, Ewha Womans University) ;
  • Park, Eun Ae (Department of Pediatrics, College of Medicine, Ewha Womans University) ;
  • Kong, Kyoungae (Department of Preventive Medicine, College of Medicine, Ewha Womans University) ;
  • Park, Bohyun (Department of Preventive Medicine, College of Medicine, Ewha Womans University) ;
  • Hong, Juhee (Department of Preventive Medicine, College of Medicine, Ewha Womans University) ;
  • Kim, Young Ju (Department of Obstetrics and Gynecology, College of Medicine, Ewha Womans University) ;
  • Lee, Hwayoung (Department of Anatomy, College of Medicine, Ewha Womans University) ;
  • Ha, EunHee (Department of Preventive Medicine, College of Medicine, Ewha Womans University) ;
  • Park, Hyesook (Department of Preventive Medicine, College of Medicine, Ewha Womans University)
  • 민정원 (이화여자대학교 의과대학 예방의학교실) ;
  • 박은애 (이화여자대학교 의과대학 소아과학교실) ;
  • 공경애 (이화여자대학교 의과대학 예방의학교실) ;
  • 박보현 (이화여자대학교 의과대학 예방의학교실) ;
  • 홍주희 (이화여자대학교 의과대학 예방의학교실) ;
  • 김영주 (이화여자대학교 의과대학 산부인과학교실) ;
  • 이화영 (이화여자대학교 의과대학 해부학교실) ;
  • 하은희 (이화여자대학교 의과대학 예방의학교실) ;
  • 박혜숙 (이화여자대학교 의과대학 예방의학교실)
  • Received : 2006.02.20
  • Accepted : 2006.03.31
  • Published : 2006.09.15

Abstract

Purpose : 'Programming' describes the process that stimulus at a critical period of development has lifelong effects. The fact that low birth weight links to the risk of elevated blood pressures in adult life is well known. This study aims to examine whether this link is evident in the newborn by investigating the relationship of the intrauterine growth indices and neonatal blood pressure(BP). Methods : We studied 127 neonates who were born at Ewha Womans' Hospital and their mothers enrolled our cohort study during pregnancy. Data on the mothers and details of the birth records were tracked and collected from medical charts. Neonatal BP was measured within 24 hours after birth. Results : Neonatal SBP was positively correlated to intrauterine growth indices; birth weight(BW)(r=0.4), head circumference(HC)(r=0.4), and birth height(r=0.3). However, an inverse relationship existed, between HC/BW ratio and neonatal SBP(r=-0.4). After adjusting for the baby's sex, maternal BP, and gestational age, neonatal SBP still associated with intrauterine growth indices. SBP was 7 mmHg higher in the highest BW group(${\geq}90percentiles$) compared to the lowest group(<10 percentiles). On the other hand, SBP was 17 mmHg lower in the highest HC/BW group(${\geq}90percentiles$) compared in the lowest group(<10 percentiles). Conclusion : This study could not find the evidence that intrauterine growth retardation affect on elevated neonatal BP. It suggests that the initiating events of BP programming may occur during postnatal growth period. To identify the critical starting period that intrauterine growth retardation leads to elevated BP, a study tracking BP changes from birth to childhood is required.

목 적 : 성인의 심혈관질환은 태아발달 동안이나 이른 어린이 시기부터 시작된다는 태아프로그래밍 개념과 출생시 작게 태어난 경우에 성인기에 혈압이 상승된다는 연구들을 고려하여 볼 때, 출생시기부터의 혈압 변화에 대한 연구가 필요함을 느꼈다. 본 연구에서는 신생아의 여러 자궁내 발육 지표와 신생아의 혈압 관련성에 대해 살펴보고자 하였다. 방 법 : 이화여자대학교 목동병원에 내원한 임산부 중 연구참여에 동의한 산모를 대상으로 코호트를 구축하고 이들의 127명의 출생아에 대한 의무기록에 근거하여 자료를 추적, 수집하였고, 생후 24시간 이내에 신생아의 혈압을 측정하였다. 결 과 : 신생아 수축기 혈압과 태내 성장지표는 유의한 양의 상관관계를 보였다; 출생체중(r=0.4), 머리둘레(r=0.4), 출생신장(r=0.3). 그러나 체중대비 머리둘레 비는 신생아 혈압과 유의한 음의 상관관계를 보였다(r=-0.4). 아기의 성과 엄마의 혈압수준, 재태연령을 보정한 상태에서도 신생아 수축기 혈압은 태내 성장지표와 연관성을 보였다. 수축기 혈압은 출생체중이 가장 높은 군에서(90 백분위수 이상) 낮은 군과 비교하여(10 백분위수 미만) 7 mmHg 높았다, 한편 출생체중 대비 머리둘레의 비가 가장 높은 군(90 백분위수 이상)에서 낮은 군(10 백분위수 미만)에 비해 17 mmHg 낮게 나타났다. 결 론 : 우리 연구 결과 자궁내 성장 지연이 신생아의 혈압을 높이는데 영향을 미치는 것을 관찰할 수 없었다. 혈압 프로그래밍은 출생 이후에 성장기간에 시작되는 것으로 생각된다. 자궁내 성장지연으로 인해 혈압이 상승하는 주요 시작 지점이 언제인지 알아보기 위해서 출생 이후부터 따라잡기 성장과 함께 아동기시기 혈압 변화에 대한 지속적인 연구가 필요하다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. Widdowson EM, McCance RA. A review : new thoughts on growth. Pediatr Res 1975;9:154-6 https://doi.org/10.1203/00006450-197503000-00010
  2. Eriksson JG, Forsen T, Tuomilehto J, Osmond C, Barker DJ. Early growth and coronary heart disease in later life :longitudinal study. Br Med J 2001;322:949-53 https://doi.org/10.1136/bmj.322.7292.949
  3. Barker DJP. Mothers, babies and health in later life. 2nd ed. Churchill : Livingstone, 1998
  4. Barker DJP, Osmond C. Infant mortality, childhood nutrition and ischaemic heart disease in England and Wales. Lancet 1986;1:1077-81
  5. Barker DJP. 1998 In utero programming of chronic disease. Clinical Science 1998;95:115-28 https://doi.org/10.1042/CS19980019
  6. Lever AF, Harrap SB. Essential hypertension : a disorder of growth with origins in childhood? J Hypertens 1992;10:101-20 https://doi.org/10.1097/00004872-199202000-00001
  7. DeSwiet M, Fayers P, Shinebourne EA. Blood pressure in first ten years of life : the Brompton study. BMJ 1992;304:23-6 https://doi.org/10.1136/bmj.304.6818.23
  8. Barker DJ, Forsen T, Eriksson JG, Osmond C. Growth and living conditions in childhood and hypertension in adult life : a longitudinal study. J Hypertens 2002;20:1951-6 https://doi.org/10.1097/00004872-200210000-00013
  9. Huxley RR, Shiell AW, Law CM. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure : a systematic review of the literature. J Hypertens 2000;18:815-31 https://doi.org/10.1097/00004872-200018070-00002
  10. Barker DJ. Fetal programming of coronary heart disease. Trends Endocrinol Metab 2002;13:364-8 https://doi.org/10.1016/S1043-2760(02)00689-6
  11. Eriksson J, Forsen T, Tuomilehto J, Osmond C, Barker D. Fetal and childhood growth and hypertension in adult life. Hypertension 2000;36:790-4 https://doi.org/10.1161/01.HYP.36.5.790
  12. Forsen T, Eriksson J, Tuomilehto J, Reunanen A, Osmond C, Barker D. The fetal and childhood growth of persons who develop type 2 diabetes. Ann Intern Med 2000;133:176-82
  13. Forsen T, Eriksson JG, Tuomilehto J, Osmond C, Barker DJ. Growth in utero and during childhood among women who develop coronary heart disease : longitudinal study. Br Med J 1999;319:1403-7 https://doi.org/10.1136/bmj.319.7222.1403
  14. Huxley RR, Shiell AW, Law CM. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure : a systematic review of the literature. J Hypertens 2000;18:815-31 https://doi.org/10.1097/00004872-200018070-00002
  15. Baker DJP, Osmond C, Golding J, Kuh D, Wadsworth MEJ. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. Br Med J 1989;298:564-7 https://doi.org/10.1136/bmj.298.6673.564
  16. Kitterman JA, Phibbs RH, Tooley WH. Aortic blood pressure in normal newborn infants during the first 12 hours of life. Paediatrics 1969;44:959-68
  17. Galan HL, Anthony RV, Rigano S, Parker TA, de Vrijer B, Ferrazzi E, et al. Fetal hypertension and abnormal doppler velocimetry in an ovine model of intrauterine growth restriction. Am J Obstet Gynecol 2005;192:272-9 https://doi.org/10.1016/j.ajog.2004.05.088
  18. De Swiet M, Fayers P, Shinebourne EA. Blood pressure in first 10 years of life : the Brompton study. BMJ 1992;304:23-6 https://doi.org/10.1136/bmj.304.6818.23
  19. Grobbee DE. Predicting hypertension in childhood : value of blood pressure measurement and family history. J Am Coll Nutr 1992;11:55-9 https://doi.org/10.1080/07315724.1992.10737985
  20. O'Sullivan MJ, Kearney PJ, Crowley MJ. The influence of some perinatal variables on neonatal blood pressure. Acta Paediatr 1996;85:849-53 https://doi.org/10.1111/j.1651-2227.1996.tb14166.x
  21. Alves JG, Vilarim JN, Figueiroa JN. Fetal influences on neonatal blood pressure. J Perinatol 1999;19:593-5 https://doi.org/10.1038/sj.jp.7200228
  22. Yu VY, Upadhyay A. Neonatal management of the growthrestricted infant. Semin Fetal Neonatal Med 2004;9:403-9 https://doi.org/10.1016/j.siny.2004.03.004
  23. Balcazar H, Haas J. Classification schemes of small-forgestational age and type of intrauterine growth retardation and its implications to early neonatal mortality. Early Hum Dev 1990;24:219-30 https://doi.org/10.1016/0378-3782(90)90029-I
  24. Bassan H, Bassan M, Pinhasov A, Kariv N, Giladi E, Gozes I, et al. The pregnant spontaneously hypertensive rat as a model of asymmetric intrauterine growth retardation and neurodevelopmental delay. Hypertens Pregnancy 2005;24:201-11 https://doi.org/10.1080/10641950500281142
  25. Fattal-Valevski A, Leitner Y, Kutai M, Tal-Posener E, Tomer A, Lieberman D, et al. Neurodevelopmental outcome in children with intrauterine growth retardation : a 3-year follow-up. J Child Neurol 1999;14:724-7 https://doi.org/10.1177/088307389901401107
  26. Martyn CN, Barker DJP, Osmond C. Mothers' pelvic size, fetal growth, and death from stroke and coronary heart disease in men in the UK. Lancet 1996;348:1264-8 https://doi.org/10.1016/S0140-6736(96)04257-2
  27. Lackman F, Capewell V, Gagnon R, Richardson B. Fetal umbilical cord oxygen values and birth to placental weight ratio in relation to size at birth. Am J Obstet Gynecol 2001;185:674-82 https://doi.org/10.1067/mob.2001.116686
  28. Williams MC, Gore D, O'Brien WF. Decreased birth weight/placenta ratio and asymmetric growth restriction. Obstet Gynecol 2000;95 Suppl 1:76-7
  29. Barker DJP, Bull AR, Osmond C. Simmonds SJ. Fetal and placental size and risk of hypertension in adult life. Br Med J 1990;301:259-62 https://doi.org/10.1136/bmj.301.6746.259
  30. Barker DJP, Godfrey KM, Osmond C, Bull A. The relation of fetal length, ponderal index and head circumference to blood pressure and the risk of hypertension in adult life. Paediatr Perinat Epidemiol 1992;6:35-44 https://doi.org/10.1111/j.1365-3016.1992.tb00741.x
  31. Law CM, Barker DJP, Bull AR, Osmond C. Maternal and fetal influences on blood pressure. Arch Dis Child 1991;66:1291-5 https://doi.org/10.1136/adc.66.11.1291
  32. Moore VM, Miller AG, Boulton TJ, Cockington RA, Craig IH, Magarey AM, et al. Placental weight, birth measurements, and blood pressure at age 8 years. Arch Dis Child 1996;74:538-41 https://doi.org/10.1136/adc.74.6.538
  33. Kingdom JCP, Kaufmann P. Oxygen and placental villous development : origins of fetal hypoxia. Placenta 1997;18:613-21 https://doi.org/10.1016/S0143-4004(97)90000-X
  34. Barker DJP, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS. Fetal nutrition and cardiovascular disease in adult life. Lancet 1993;341:938-41 https://doi.org/10.1016/0140-6736(93)91224-A
  35. Simmons RA, Flozak AS, Ogata ES. The effect of insulin and insulin like growth factor-1 on glucose transport in normal and small for gestational age fetal rats. Endocrinology 1993;133:1361-8 https://doi.org/10.1210/en.133.3.1361
  36. Guerra A, Rego C, Vasconcelos C, Silva D, Castro E, Guimaraes MJ. Low birth weight and cardiovascular risk factors at school age. Rev Port Cardiol 2004;23:325-39
  37. Eriksson JG, Forsen T, Tuomilehto J, Osmond C, Barker DJ. Early growth and coronary heart disease in later life :longitudinal study. BMJ 2001;322:949-53 https://doi.org/10.1136/bmj.322.7292.949
  38. Lee JS, Park SI, Park HW, Kim SH, Hah TS, Lee JH. Blood pressure of healthy newborns in the first week of life. J Korean Soc Pediatr Nephrol 2005;9:8-14
  39. Lee HJ, Cha JH, Lee SJ, Lee SW, Park EA. Variable factors affecting the neonatal kidney size. Korean J Perinatol 2005;16:15-22
  40. Park HY, Kim HS, Lee EK, Chang W, Kim S, Hwang YJ, et al. The relationship between the bronchopulmonary dysplasia and illness severity(SNAP). J Korean Soc Neonatol 2003;10:39-46