Environment-friendly Trivalent Chromate Treatment for Zn Electroplating

아연도금용 친환경 3가 크로메이트 표면처리기술

  • 김수원 (남동화학 주식회사) ;
  • 이철태 (단국대학교 공학부 화학공학전공)
  • Received : 2006.09.13
  • Published : 2006.10.10

Abstract

Hexavalent chromium passivation, as very effective anti-corrosion method, can not be used in the field of surface treatment for metal, any more. Throughout the world, this regulations which was applied to automotive industries will be extended to all industries including electronics industries in the near future. Therefore a new anti-corrosion method should be established without delay, and trivalent chromium passivation as an alternatives replace the hexavalent chromium passivation for the time being. This paper gives an overview of the currently available trivalent chromium passivation processes, and then it attempts to give an insight to develop a more effective trivalent chromium conversion coating process for possible substitution of the hexavalent chromium passivation process.

금속표면처리 기술 분야에서 광범위하게 적용되어온 6가 크롬에 의한 부식억제방법은 더 이상 사용할 수 없는 단계에 이르렀다. 전 세계적으로 자동차 산업에 적용되기 시작한 이 6가 크롬사용에 대한 규제는 전자산업을 비롯한 모든 산업에 예외 없이 적용될 것이다. 이에 따라 새로운 부식억제 방법이 절대적으로 필요하며, 3가 크롬을 바탕으로 하는 새로운 부식억제 방법이 그 자리를 대신할 것이다. 따라서 본 총설에서는 6가 크로메이트 대체를 위한 화성코팅에 대한 공정 개발을 위해 현재까지 진행된 과정 및 제안된 3가 크롬화성코팅을 소개하여 획기적인 3가 크로메이트 화성코팅 공정의 확립에 기여하고자 한다.

Keywords

References

  1. C. T. Lee, J. Korean Ind. Chem., 12, 831 (2001)
  2. M. Schlesinger and M. Paunovic, 'Modern Electroplating' 4th ed. N. V. Mandich & D. L. Snyder, 289, John Wiley & Sons, Inc, New York (2000)
  3. J. H. Lindsay, Plating & Surface Finishing, 8, 32 (2001)
  4. K. Shimizu, G. M. Brown, K. Kobayashi, P. Skeldon, G. E. Thompson, and G. C. Wood, Corros. Sci., 40, (1998)
  5. N. M. Martyak, Surf. Coat. Technol., 88, 1 (1997) https://doi.org/10.1016/S0257-8972(96)02922-2
  6. J. R. Waldrop and M. W. Kendig, J. Electrochem. Soc., 145 (1998)
  7. G. A. Prentice and K. S. Chen, J. Appli. Electrochem., 28, 971 (1998) https://doi.org/10.1023/A:1003437616899
  8. Z. H. Zhao, S. Eguchi, Y. Okada, and T. Osaka, Chem. Lett., N.1 (1996)
  9. M. P. Nascimento, R. C. Souza, I. M. Miguel, W. L. Pigatin, and H. J. C. Voorwald, Surf. Coat. Technol., 138, 113 (2001) https://doi.org/10.1016/S0257-8972(00)01148-8
  10. W. R. McGovern, P. Schmutz, R. G. Buchheit, and R. L. McCreery, J. Electrochem. Soc., 147, 4494 (2000) https://doi.org/10.1149/1.1394091
  11. P. Campestrini, E. P. M. van Westing, and J. H. W. de Wit, Electrochim. Acta, 46, 2631 (2001) https://doi.org/10.1016/S0013-4686(01)00476-5
  12. M. Perucki and P. Chandrasekhar, Synth. Met., 119, 385 (2001) https://doi.org/10.1016/S0379-6779(00)01396-5
  13. P. Preikschat and R. Jansen, Galvanotechnik, Jahrg., 54, 49 (2000)
  14. International Standard ISO 9227 (1990)
  15. KS D 9502 (2005)
  16. W. H. Hartford, 'Encyclopedia of chemical technology' 3rd. ed. Wiley & Sons 6, 82 (1984)
  17. A. J. Kubicek, 'Encyclopedia of Chemical Processing and Design' Dekker, 8, 303 (1979)
  18. P. Hulser, International MKS-specialistconference, 4-5 Nov. (1999)
  19. P. Hulser, AESF Continuous Steel Strip Sympsium, 7-8 May (2002)
  20. ねじの世界 10 (2002)
  21. Pyomyonchurri Journal, 171, 18 (2006)
  22. Pyomyonchurri Journal, 173, 24 (2006)
  23. R.A. Chalmers, in Comprehensive Analytical Chemistry, 10, 581, Elservier, Amsterdam (1962)
  24. W. H. Hartford, Chromium, in Treatise on Analytical Chemistry, I. M. Kolthoff and P. J. Elving, eds, Part II, 8, Interscience, NY (1963)
  25. D. T. Burns, A. Townshend, and A. H. Carter, Inorganic Reaction Chemistry, 2, 140, Ellis Horwood, Chichester (1981)
  26. J. E. Earley and R. D. Cannon, Transition Met. Chem., 1, 33 (1965)
  27. IUPAC, Reagent and Reactions for Qualitative Inorganic Analysis, 5th Report, Butterworths, London (1964)
  28. R. Pribil, Z. Roubal, and E. Svatek, Collect. Czech. Chem. Commun., 18, 43 (1953)
  29. M. R. Verma, V. M. Bhuchar, and K. C. Agrawall, Microchim., Acta, 766 (1959)
  30. G. Boef and B. S. Poeder, Anal. Chim. Acta, 30, 261 (1964) https://doi.org/10.1016/S0003-2670(00)88718-8
  31. P. Cazeneuve, Compt. Rend., 131, 346 (1960)
  32. R. T. Pflaum and L. C. Howick, J. Am. Chem. Soc., 78, 4862 (1956) https://doi.org/10.1021/ja01600a014
  33. H. Marchart, Anal. Chim. Acta, 30, 11 (1964) https://doi.org/10.1016/S0003-2670(00)88678-X
  34. P. Koenig and Chem. Zeit., 35, 277 (1911)
  35. P. Wenger and R. Duckert, Helv. Chem. Acta, 27, 1839 (1944) https://doi.org/10.1002/hlca.194402701233
  36. N. A. Tananaev and Z. Anorg. Allgem. Chem., 140, 320 (1924) https://doi.org/10.1002/zaac.19241400121
  37. F. Buscarons and I. Artigas, Anal. Chim. Acta, 16, 452 (1957) https://doi.org/10.1016/S0003-2670(00)89966-3
  38. N. M. Cullinane and S. J. Chard, Analyst, 73, 95 (1948) https://doi.org/10.1039/an9487300095
  39. W. F. Jones, Mikrochim. Acta, 88 (1961)
  40. F. Feigl and V. Anger, Spot Tests in Inorganic Analysis, 6th ed., 195 (1972)
  41. D. T. Burns, A. Townshend, and A. G. Catchpole, Inorganic Reaction Chemistry:Systematic Chemical Separation, 238, Horwood, chichester (1980)