Stability of Vitamin-C Inclusion Comolexes Prepared using a Solvent Evaporation Method

용매증발법으로 제조된 Vitamin-C 포접복합체의 안정성

  • Yang, Jun-Mo (Department of Chemical and Biochemical Engineering, The University of Suwon) ;
  • Lee, Yun-Kyung (Department of Chemical and Biochemical Engineering, The University of Suwon) ;
  • Kim, Eun-Mi (Department of Chemical and Biochemical Engineering, The University of Suwon) ;
  • Jung, In-Il (Department of Chemical and Biochemical Engineering, The University of Suwon) ;
  • Ryu, Jong-Hoon (Department of Chemical and Biochemical Engineering, The University of Suwon) ;
  • Lim, Gio-Bin (Department of Chemical and Biochemical Engineering, The University of Suwon)
  • 양준모 (수원대학교 공과대학 화공생명공학과) ;
  • 이윤경 (수원대학교 공과대학 화공생명공학과) ;
  • 김은미 (수원대학교 공과대학 화공생명공학과) ;
  • 정인일 (수원대학교 공과대학 화공생명공학과) ;
  • 유종훈 (수원대학교 공과대학 화공생명공학과) ;
  • 임교빈 (수원대학교 공과대학 화공생명공학과)
  • Published : 2006.04.28

Abstract

Vitamin-C is one of the typical bioactive substances widely used in the cosmetic and pharmaceutical applications. It is well known that the bioavailability of vitamin-C decreases with time because it is spontaneously oxidized in the presence of oxygen. In this study, vitamin-C inclusion complexes were prepared by formulating vitamin-C with 2-hydroxypropyl-${\beta}$-cyclodextrin (HP-${\beta}$-CD) to protect vitamin-C from being oxidized. Vitamin-C inclusion complexes were prepared by a solvent evaporation method using a rotary evaporator and various solvents of different dielectric constant such as ethanol, methanol and distilled deionized water to investigate the effect of solvent polarity on the stability of vitamin-C. To estimate the stability of inclusion complexes, samples were stored in a 50 mM phosphate buffer solution of pH 7.0 for 24 hours at $25{\pm}0.1^{\circ}C$ and the degradation rate of vitamin-C was calculated using a high performance liquid chromatography. The stability of vitamin-C was observed to improve with the increase of solvent polarity.

본 연구에서는 용매증발법을 이용하여 대표적 생리활성 물질인 Vitamin-C의 불안정성을 극복하기 위하여 HP-${\beta}$-CD와의 포접복합체를 제조하고 수용액상에서의 안정성을 분석하였다. Vitamin-C와 HP-${\beta}$-CD 간의 몰비를 변화시켜 제조한 포접복합체의 안정성 시험 결과 포접 몰비는 1:1로 추정되며, 포접복합체 제조에 사용된 용매의 유전상수가 커질수록 Vitamin-C의 안정성이 향상되는 것을 확인할 수 있었다. 3차 증류수를 용매로 하여 제조된 포접복합체의 경우 순수한 Vitamin-C보다 Vitamin-C의 겉보기 1차 분해속도 상수 값이 감소하는 것을 확인하였는데 이는 결과적으로 Vitamin-C의 안정성이 향상되었음을 의미한다. 따라서 HP-${\beta}$-CD와의 포접복합체 형성은 Vitamin-C의 안정성을 향상시켜 생체이용률을 향상시킬 수 있음을 확인하였으며 불안정한 여러 생리활성물질에 적용할 수 있을 것으로 기대된다.

Keywords

References

  1. Hodges, R. E., J. Hood, J. E. Canham, H. E. Sauberlich, and E. M. Baker (1971), Clinical manifestations of ascorbic acid deficientcy in man, Am. J. Clin. Nutr. 24, 432-443 https://doi.org/10.1093/ajcn/24.4.432
  2. Hodges, R. E., E. M. Baker, J. Hood, H. E. Sauberlich, and S. C. March (1969), Experimental scurvy in man, Am. J. Clin. Nutr. 22, 533-548
  3. Silva, G. M. and P. M. Maia Campos (2001), Ascorbic acid and its derivatives in cosmetic formulations, Cosmet. Toil. 115, 795-801
  4. Dollery, Colin T. (1998), Therapeutic Drugs, 2nd ed., Churchill, Livingstone
  5. Djerassi, D. (1997), The role of the corrective vitamins A, B5 and C in the new, high performance cosmetics, Drug Cosmet Ind. 160, 60-62
  6. Fox, C. (1997), Advances in the cosmetic science and technology of topical bioactive materials, Cosmet. Toil. 112, 67-84
  7. Roing, M. G., Z. S. Rivera, and J. F. Kennedy (1995), A model study on rate of degradation of L-ascorbic acid during processing home-produced juice concentrates, Int. J. Food Sci. Nutr. 46, 107 https://doi.org/10.3109/09637489509012538
  8. Liao, M. L. and P. A. Seib (1988), Chemistry of L-ascorbic acid related to foods, Food Chemistry 30, 313-317 https://doi.org/10.1016/0308-8146(88)90116-1
  9. Gaston Vermin et al. (1998), Thermal decomposition of ascorbic acid, Carbohydr. Res. 305, 1-15 https://doi.org/10.1016/S0008-6215(97)00234-6
  10. Rodney Boyer (2002), Concepts in Biochemistry, 2nd ed., John Wiley & Sons, New York
  11. John C, Deutsch (1998), Ascorbic acid oxidation by hydrogen peroxide, Anal. Biochem. 255, 1-7 https://doi.org/10.1006/abio.1997.2293
  12. Austria, R., A. Semenzato, and A. Bettero (1997), Stability of vitamin C derivates in solution and topical formulations, J. Pharm. Biomed. Anal. 15, 795-801 https://doi.org/10.1016/S0731-7085(96)01904-8
  13. Spiclin, P., M. Homar, A. Zupancic-Valant, and M. Gasperlin (2003), Sodium ascorbyl phosphate in topical microemulsions, Int. J. Pharm. 256, 65-73 https://doi.org/10.1016/S0378-5173(03)00063-2
  14. Gallarate, M., M. E. Carlotti, M. Trotta, and S. Bovo (1999), On the stability of ascorbic acid in emulsified systems for topical and cosmetic use, Int. J. Pharm. 188, 233-241 https://doi.org/10.1016/S0378-5173(99)00228-8
  15. Lee, Y. W., Y. I. Hwang, and S. C. Lee (1999), Effect of liposome on the stabilization of ascorbic acid, Korean J. Food Sci. Technol. 31(2) 280-284
  16. Yang, J. H., S, Y. Lee, Y. S, Han, K. C. Park, and J. H. Choy (2003), Efficient transdermal penetration and improved stability of L-ascorbic acid encapsulated in an inorganic nanocapsule, Bull. Korean Chem. Soc. 24(4) 499-503 https://doi.org/10.5012/bkcs.2003.24.4.499
  17. Manzanares, M. I., V. Solĺs, and Rita H. de Rossi (1996), Effect of cyclodextrins on the electrochemical behaviour of ascorbic acid on gold electrodes, J. Electroanal. Chem. 407, 141-147 https://doi.org/10.1016/0022-0728(95)04468-X
  18. Loftsson, T., and M. E. Brewster (1996), Pharmaceutical applications of cyclodextrins. I. Drug solubilization and stabilization, J. Pharm. Sci. 85, 1017-1025 https://doi.org/10.1021/js950534b
  19. Másson, M., T. Loftsson, G. Másson, and E. Stefánsson (1999), Cyclodextrins as permeation enhancers: some theoretical evaluations and in vitro testing, J. Control. Release 59, 107-118 https://doi.org/10.1016/S0168-3659(98)00182-5
  20. Singh, R. P., D, R, Heldman, and J. R. Kirle (1976), Kinetics of quality degradation: ascorbic acid oxidation in infant formula during storage, J. Food Sci. 41, 304-308 https://doi.org/10.1111/j.1365-2621.1976.tb00606.x
  21. Eison-Perchonok, M. H. and T. W. Downes (1982), Kinetics of ascorbic acid autoxidation as a function of dissolved oxygen concentration and temperature, J. Food. Sci. 47, 765-773 https://doi.org/10.1111/j.1365-2621.1982.tb12710.x
  22. Robertson, G. L. and C. M. L. Samaniego (1986), Effect of initial dissolved oxygen levels on the degradation of ascorbic acid and the browning of lemon Juice during storage, J. Food. Sci. 51, 184-192 https://doi.org/10.1111/j.1365-2621.1986.tb10866.x
  23. Martin, A., J. Swarbrick, and A. Cammarata (1983), Physical chemical principles in the pharmaceutical sciences, 3nd ed., Lea & Febiger, Philadelphia