Enhanced Lycopene Production in Recombinant Escherichia coli by Random Transposon and NTG Mutagenesis

Transposon 및 NTG 돌연변이를 이용한 재조합 대장균의 라이코펜 생산성 증진

  • Published : 2006.04.28

Abstract

Escherichia coli harboring pAC-LYCO4 and pDdxs was used for lycopene production. Three wild type strains of E. coli OW1, MG1655, and W3110 were compared with DH5${\alpha}$ used before for lycopene production. Lycopene productivity of E. coli MG1655 was similar to DH5${\alpha}$ and the highest among those wild type strain. Therefore, MG1655 strain was used for random transposon and NTG mutagenesis to increase lycopene productivity. Through transposon mutation, five transposon mutants with increased lycopene productivity were obtained. It was found that genes knocked out by transposon insertion were treB in Tn1 mutant, B2436 in Tn2 mutant, and rfaH in Tn3, 4, and 5 mutants. Lycopene productivity was the highest in Tn4 mutant among the Tn mutants, which was 6-fold and 8-fold higher in lycopene concentration and content, respectively, in comparison with those obtained with wild type strain. NTG4 mutant was acquired with NTG mutation. The highest lycopene productivity of 6 mg/L and 4 mg/g DCW was obtained from the NTG4 mutant when arabinose of 0.013 mM was added for induction of dxs, rate-limiting gene of MEP pathway. The lycopene productivity of NTG4 mutant was increased 18-fold and 12-fold in lycopene concentration and content, respectively when comparing with the wild type strain.

라이코펜 생산성을 향상시키기 위하여 몇 가지 대장균 균주들을 대상으로 생산성 시험을 한 결과 MG1655 균주가 가장 우수하였다. 대장균 MG1655 균주의 염색체 DNA 내에 존재하는 특정 유전자의 기능이 상실되었을 때 라이코펜 생산성이 증가되는 변이체를 선발하기 위해 transposon 돌연변이를 수행하였으며, 5종의 우수 transposon 변이체를 얻었다. 특히, Tn4 변이체는 야생형 MG1655에 비해서 라이코펜 생산량은 6배, 균체 내 함량은 7배로 가장 높았다. Transposon 삽입에 의해 결손된 유전자를 파악하기 위해 inverse PCR을 통해 염기서열을 확인하였으며, 결손된 유전자는 rfaH, treB, B2436으로 규명되었다. 또한 특정 유전자 기능의 상실뿐만 아니라 기능의 강화나 변화 등에 의한 라이코펜 생산성이 증가된 변이체를 선발하기 위해 NTG 돌연변이를 수행하였으며, 4개의 우수한 NTG 변이체를 얻었다. 이들 중에 NTG4 변이체가 가장 높은 라이코펜 생산량을 보였다. 특히, NTG4 변이체는 발현유도물질인 arabinose의 소량(0.013mM) 첨가 시에 라이코펜 농도, 6 mg/L와 균체 내 함량 4 mg/g DCW로 최대의 라이코펜 생산성을 보였고, 이것은 야생형 MG1655에 비해서 각각 18배와 12배 높은 생산성이다.

Keywords

References

  1. Bendich, A. (1993), Biological functions of dietary carotenoids, Ann N. Y. Acad. Sci. 691, 61-67 https://doi.org/10.1111/j.1749-6632.1993.tb26157.x
  2. Rice-Evans, C. A., Sampson, J., Bramley, P. M., and D. E. Holloway (1997), Why do we expect carotenoids to be antioxidants in vivo? Free Radic. Res. 26, 381-398 https://doi.org/10.3109/10715769709097818
  3. Jyonouchi, H., Hill, R. J., Tomita, Y., and R. A. Good (1991), Studies of immunomodulating actions of carotenoids. I. Effects of beta-carotene and astaxanthin on murine lymphocyte functions and cell surface marker expression in in vitro culture system, Nutr. Cancer 16, 93-105 https://doi.org/10.1080/01635589109514148
  4. Misawa, N., Yamano, S., and H. Ikenaga (1991), Production of beta-carotene in Zymomonas mobilis and Agrobacterium tumefaciens by introduction of the biosynthesis genes from Erwinia uredovora, Appl. Environ. Microbiol. 57, 1847-1849
  5. Sandmann, G. (1994), Carotenoid biosynthesis in microorganisms and plants, Eur. J. Biochem. 223, 7-24 https://doi.org/10.1111/j.1432-1033.1994.tb18961.x
  6. Yamano, S., Ishii, T., Nakagawa, M., Ikenaga, H., and N. Misawa (1994), Metabolic engineering for production of beta-carotene and lycopene in Saccharomyces cerevisiae, Biosci. Biotechnol. Biochem. 58, 1112-1114 https://doi.org/10.1271/bbb.58.1112
  7. Cunningham, F. X., Jr., Chamovitz, D., Misawa, N., Gantt, E., and J. Hirschberg (1993), Cloning and functional expression in Escherichia coli of a cyanobacterial gene for lycopene cyclase, the enzyme that catalyzes the biosynthesis of beta-carotene, FEBS Lett. 328, 130-138 https://doi.org/10.1016/0014-5793(93)80980-9
  8. Eisenreich, W., Rohdich, F., and A. Bacher (2001), Deoxyxylulose phosphate pathway to terpenoids, Trends Plant Sci. 6, 78-84 https://doi.org/10.1016/S1360-1385(00)01812-4
  9. Boucher, Y. and W. F. Doolittle (2000), The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways, Mol. Microbiol. 37, 703-716 https://doi.org/10.1046/j.1365-2958.2000.02004.x
  10. Rohdich, F., Kis, K., Bacher, A., and W. Eisenreich (2001), The non-mevalonate pathway of isoprenoids: genes, enzymes and intermediates, Curr. Opin. Chem. Biol. 5, 535-540 https://doi.org/10.1016/S1367-5931(00)00240-4
  11. Guzman, L. M., Belin, D., Carson, M. J., and J. Beckwith (1995), Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter, J. Bacteriol. 177, 4121-4130 https://doi.org/10.1128/jb.177.14.4121-4130.1995
  12. Kim, S. W., and J. D. Keasling (2001), Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production, Biotechnol. Bioeng. 72, 408-415 https://doi.org/10.1002/1097-0290(20000220)72:4<408::AID-BIT1003>3.0.CO;2-H
  13. Wilmes-Riesenberg, M. R. and B. L. Wanner (1992), TnphoA and TnphoA' elements for making and switching fusions for study of transcription, translation, and cell surface localization, J. Bacteriol. 174, 4558-75 https://doi.org/10.1128/jb.174.14.4558-4575.1992
  14. Ko, M. and C. Park (2000), Two novel flagellar components and H-NS are involved in the motor function of Escherichia coli, J. Mol. Biol. 303, 371-382 https://doi.org/10.1006/jmbi.2000.4147
  15. Sambrook, J. and D. W. Russell (2001), Molecular Cloning, 3rd ed. Cold spring Harbor Laboratory Press, New York
  16. Kang, M. J., Y. M. Lee, S. H. Yoon, J. H. Kim, S. W. Ock, K. H. Jung, Y. C. Shin, J. D. Keasling, and S. W. Kim (2005), Identification of genes affecting lycopene accumulation in Escherichia coli using a shot-gun method, Biotech. Bioeng. In press
  17. Kang, M. J., S. H. Yoon, Y. M. Lee, S. H. Lee, J. E. Kim, K. H. Jung, Y. C. Shin, and S. W. Kim (2005), Enhancing lycopene production in Escherichia coli by optimization of lycopene synthetic pathway, J. Microbiol. Biotech. In press