Removal of Gaseous Styrene using a Pilot-Scale Rotating Drum Biotrickling Filter

Pilot-scale 회전식 드럼 바이오필터를 이용한 Styrene 제거

  • Hwang, Jae-Woong (Department of Technology Promotion, Environmental Management Corporation) ;
  • Lim, Ji-Sung (Department of Chemical and Biochemical Engineering, Pusan National University) ;
  • Chang, Seok-Jin (Institute for Environmental Technology and Industry, Pusan National University) ;
  • Lee, Eun-Yul (Institute for Environmental Technology and Industry, Pusan National University) ;
  • Choi, Cha-Yong (School of Chemical and Biological Engineering, Seoul National University) ;
  • Park, Sung-Hoon (Department of Chemical and Biochemical Engineering, Pusan National University)
  • 황재웅 (환경관리공단 기술진흥처) ;
  • 임지성 (부산대학교 화학생명공학과) ;
  • 장석진 (환경기술산업개발연구센터) ;
  • 이은열 (환경기술산업개발연구센터) ;
  • 최차용 (서울대학교 화학생물공학부) ;
  • 박성훈 (부산대학교 화학생명공학과)
  • Published : 2006.06.28

Abstract

A new type of biofilter, a rotating drum biotrickling filter(RDBF), was developed and operated for the removal of styrene from industrial waste gas. The porous polyurethane foam sheet was used as a packing materials for the RDBF and a pure culture of Gram-positive bacterium Brevibacillus sp. SP1 was used as an inoculum. The reactor showed a short start-up period of 18 days, during which uniform biofilms were developed on the packing. During a steady operation at an incoming styrene concentration of $200ppm_v$ and a retention time of 0.5 min, a high and stable removal of styrene over 95% was observed. The maximum elimination capacity was estimated to be $125g/m^3{\cdot}hr$. The outstanding performance was attributed to an efficient gas-liquid mass transfer and the appropriate supply of nutrient solution to the biofilm microorganisms on the packing by the rotation of the drum.

본 연구에서는 신 개념의 바이오필터 시스템인 RDBF를 이용하여 기상의 styrene을 제거하고자 하였다. 다양한 운전조건에서 시스템의 성능을 평가하고, 진공흡입을 통해 과다성장 미생물을 제어하고자 하였다. RDBF에서는 sheet 형태의 충진 담체를 사용하므로 영양원 및 공기의 균일한 공급이 가능하였고, 빠른 속도로 균일한 미생물 층을 담체 표면에 형성할 수 있었다. 또한 기-액 접촉면적을 증대 시켜 95% 이상의 안정적이고 높은 styrene 분해 효율과 $125g/m^3{\cdot}hr$의 높은 제거 용량을 가질 수 있게 해주었다. 하지만 우수한 성능은 미생물의 과다성장에 따른 기공의 폐쇄현상 때문에 오래 지속되지 않았고 반응기의 성능과 안정성은 급속히 저하되었다. 이를 해결하기 위해 진공흡입을 통한 미생물 제거를 시도하였으나 제한적인 효과만을 확인하였다. 향후 RDBF 반응기의 상업화를 위해서는 보다 효율적인 미생물 제어 방법이 개발될 필요가 있다.

Keywords

References

  1. Devinny, J. S., M. A. Deshusses, and T. S. Webster (1999), Biofiltration for Air Pollution Control, Lewis publishers, USA, 1999
  2. Ottengraf, S. P. P. (1987), Biological Systems for Wastegas Elimination. Trends in Biotechnol. 5, 132-136 https://doi.org/10.1016/0167-7799(87)90007-2
  3. van Groenestijn, J. W. and P. G. M. Hesselink (1993), Biotechniques for Air Pollution Control, Biodegradation 4, 283-301 https://doi.org/10.1007/BF00695975
  4. Kennes, C. and F. Thalasso (1998), Waste Gas Biotreatment Technology, J. Chem. Technol. Biotechnol. 72, 303-319 https://doi.org/10.1002/(SICI)1097-4660(199808)72:4<303::AID-JCTB903>3.0.CO;2-Y
  5. Utgikar, V., R. Govind, Y. Shan, S. Safferman, and R. C. Brenner (1990), Biodegradation of volatile organic chemicals in a biofilter. In: Emerging Technologies in Hazardous Waste Management II. (TEDDER, D. W., POHLAND, F. G., eds.), American Chemical Society Symposium Series, p 468
  6. Ortiz, I., M. Morales, C. Gobbee, V. Guerrero, R. Auria, and S. Revah (1998), Biofiltration of gasoline VOCs with different support media. Proc. of the 91th Annual Meeting & Exhibition, Pittsburgh, USA: Air & Waste Management Association
  7. Myung, S. W., Y. S. Nam, Y. W. Lee, and S. H. Choi (2001), Removal Characteristics of toluene in biofilters packed with recirculated-PU-foams of different porosities. Korean J. Biotechnol. Bioeng. 18, 448-454
  8. Jang, J. H., M. Hirai, and M. Shoda (2004), Styrene Degradation by Pseudomonas sp. SR-5 in Biofilters with Organic and Inorganic Packing Materials, Appl. Microbiol. Biotechnol. 65, 349-355
  9. Zhou, Q., Y. L. Huang, D. H. Tseng, H. Shim, and S. T. Yang (1998), Trickling Fibrous-bed Bioreactor for Biofiltration of Benzene in Air, J. Chem. Technol. Biotechnol. 73, 359-368 https://doi.org/10.1002/(SICI)1097-4660(199812)73:4<359::AID-JCTB970>3.0.CO;2-V
  10. Pol, A., F. J. J. Van Haren, H. J. M. Op den Camp, and C. van der Drift (1998), Styrene Removal from Waste Gas with a Bbacterial Biotrickling Filter, Biotechnol. Lett. 20, 407-410 https://doi.org/10.1023/A:1023438517772
  11. Pol, A., H. J. M. Op den Camp, S. G. M. Mees, M. A. S. H. Kersten, and C. van der Drift (1994), Isolation of a Dimethylsulfide Utilizing Hyphomicrobium Species and Its Application in Biofiltration of Polluted Air, Biodegradation 5, 105-112 https://doi.org/10.1007/BF00700635
  12. Moe, W. M. and R. L. Irvine (2001), Polyurethane Foam Based Biofilter Media for Toluene Removal, Wat. Sci. Technol. 43, 35-43
  13. Yang, C., M. T. Suidan, X. Zhu, and B. J. Kim (2003), Biomass Accumulation Patterns for Removing Volatile Organic Compounds in Rotating Drum Biofilters, Wat. Sci. Tech. 48, 89-96
  14. Yang, C. M. T. Suidan, X. Zhu, and B. J. Kim (2002), Removal of Diethyl Ether in a Rotating Drum Biofilter at High Organic Loading Rates, Proc. the AWMA's 95th Annual Meeting & Exhibition, Baltimore, Maryland, 2002
  15. Moon, C. H. (2003), High performance biotrickling filter for gaseous styrene removal, M.S. Thesis, Dept. of Chemical Engineering, Busan National University, Busan
  16. Moe, W. M. and R. L. Irvine (2000), Polyurethane Foam Medium for Biofiltration II : Operation and Performance, J. environ. eng. 126, 826-832 https://doi.org/10.1061/(ASCE)0733-9372(2000)126:9(826)
  17. Lu, C. S., M. R. Lin, and J. C. Lin (2001), Removal of Styrene Vapor from Waste Gases by a Trickle-bed Air biofilter, Hazard. Mat. 82, 233-245 https://doi.org/10.1016/S0304-3894(00)00347-2
  18. Lu, C. S. M. R. Lin, and I. Wey (2001), Removal of Pentane and Styrene Mixtures from Waste Gases by a Trickle-bed Air Biofilter, Chemical Tech. Biotech. 820-826
  19. Smith, F. L., G. A. Sorial, M. T. Suidan, A. W. Breen, P. Biswas, and R. C. Brenner (1996), Development of two biomass control strategies for extended, stable operation of highly efficient biofilters with high toluene loadings, Environ. Sci. Technol. 30, 1744-1751 https://doi.org/10.1021/es950743y
  20. Weber, F. J. and S. Hartmans (1996), Prevention of clogging in a biological trickle-bed reactor removing toluene from contaminated air, Biotechnol. Bioeng. 50, 91-97 https://doi.org/10.1002/(SICI)1097-0290(19960405)50:1<91::AID-BIT10>3.0.CO;2-A
  21. Holubar, P., C. Andorfer, and R. Braun (1995), Prevention of clogging in trickling filters for purification of hydrocarboncontaminated air. In Conference on Biofiltration for 1995, 5-6 Oct., proc., University of Southern California, Los Angeles, CA, pp. 115-122