Effects of pH Control Methods on Removal Efficiency in Electrokinetic Bioremediation of Phenanthrene-contaminated Soil

Phenanthrene-오염토양의 동전기 생물학적 복원에서 pH 조절방법이 제거효율에 미치는 영향

  • Kim, Sang-Joon (The Korean Intellectual Property Office) ;
  • Park, Ji-Yeon (Korea Institute of Energy Research) ;
  • Lee, You-Jin (Department of Chemical and Biomolecular Engineering, KAIST) ;
  • Yang, Ji-Won (Department of Chemical and Biomolecular Engineering, KAIST)
  • Published : 2006.06.28

Abstract

In this study, problems related with pH control in electrokinetic(EK) bioremediation of phenanthrene contaminated soil were observed, and the effects of pH control methods on the removal efficiency were investigated to search a further application strategy. In a preliminary experiment, it was found out by flask cultivation that a certain sulfate concentration was needed to degrade phenanthrene well using Sphingomonas sp. 3Y. However, when $MgSO_4$ was used as sulfate source in EK bioremediation, the bacterial activity reduced seriously due to the abrupt decrease of pHs in soil and bioreactor by the combination of magnesium and hydroxyl ions. When another strong buffering compound was used to control the pH problem, the good maintenance of the bacterial activity and pHs could be observed, but the removal efficiency decreased largely. When a low concentration of $MgSO_4$ was added, the removal efficiency decreased somewhat in spite of the good maintenance of neutral pHs. With the addition of NaOH as a neutralizing agent, the removal efficiency also decreased because of the increase of soil pH. Consequently the selection of electrolyte composition was a very important factor in EK bioremediation and some sulfate sources suitable for both bacterial activity and contaminant degradation should be investigated.

본 연구에서는 phenanthrene-오염토양의 정화를 위한 동전기 생물학적복원에서 나타나는 pH 조절과 관련한 문제점과 이것에 대한 해결방법이 복원효과에 어떠한 영향을 주는지 조사하므로써 앞으로의 방향을 모색하고자 하였다. 플라스크 배양실험에서 Sphingomonas sp. 3Y를 이용하여 phenanthrene를 분해하기 위해서는 황산염을 적절한 농도로 공급하는 것이 중요하였는데 동전기 생물학적복원에서는 $MgSO_4$를 황산염원으로 공급했을 때 Mg이온이 음극에서 생성된 수산화이온과 결합하여 침전물을 형성하고 토양과 생물반응기의 pH를 과도하게 감소시키므로 미생물활성을 저해하고 제거효율이 감소되었다. 따라서 pH를 중성으로 유지하기 위해 강한 완충성분을 사용한 경우 비록 pH와 미생물활성은 잘 유지되었지만 제거효율이 크게 감소되었다. 한편 낮은 농도로 $MgSO_4$를 공급했을 때 역시 pH와 미생물활성은 잘 유지하였으나 제거효율이 다소 감소하였다. NaOH와 같은 중화제를 첨가한 경우에는 토양 pH의 상승하여 제거효율이 감소되었다. 결과적으로 전해질 조성은 동전기 생물학적복원의 복원효율에 매우 중요한 요소이며 앞으로 오염물 분해와 미생물활성유지에 적합한 황산염원이 조사되어야 한다.

Keywords

References

  1. Cookson, J. T. (1995), Bioremediation Engineeing, McGraw-Hill Inc., USA
  2. Mohammed, N. (1996), State-of-the-art review of bioremediation studies, J. Environ. Sci. Hlth. A31(7), 1547-1574
  3. Luo, Q., Zhang, X., Wang, H., and Y. Qian (2005), The use of non-uniform electrokinetics to enhance in situ bioremediation of phenol-contaminated soil, J. Hazard. Mater. B121, 187-194
  4. Shapiro A. P. and R. F. Probstein (1993), Removal of contaminants from saturated clay by electroosmosis, Environ. Sci. Technol. 27(2), 283-291 https://doi.org/10.1021/es00039a007
  5. Acar, Y. B. and A. N. Alshawabkeh (1996), Electrokinetic remediation. 1. Pilot-scale tests with lead spiked kaolinite, J. Geotec. Eng. 122, 173-185 https://doi.org/10.1061/(ASCE)0733-9410(1996)122:3(173)
  6. Pamukcu, S., Weeks, A., and J. K. Wittle (1997), Electrochemical extraction and stabilization of selected inorganic species in porous media, J. Hazard. Mater. 55(1-3), 305-318 https://doi.org/10.1016/S0304-3894(97)00010-1
  7. Acar, Y. B. and A. N. Alshawabkeh (1993), Principles of electrokinetic remediation, Environ. Sci. Technol. 27(13), 2638-2647 https://doi.org/10.1021/es00049a002
  8. Kim, S. J., Park, J. Y., Lee, Y. J., Lee, J. Y., and J. W. Yang (2005), Application of a new electrolyte circulation method for ex situ electrokinetic bioremediation of a laboratory-prepared pentadecane contaminated kaolinite, J. Hazard. Mater. B118, 171-176
  9. Clarke, R. L., Lageman, R., Pool, W., and Clarke S. R., Electro chemically-aided biodigestion of organic materials, US Patent 5,846,393 (1998)
  10. DeFlaun, M. F. and C. W. Condee (1997), Electrokinetic transport of bacteria, J. Hazard. Mater. 55, 263-277 https://doi.org/10.1016/S0304-3894(97)00023-X
  11. Acar, Y. B. and A. N. Alshawabkeh (1993), Principles of electrokinetic remediation, Environ. Sci. Technol. 27(13), 2638-2647 https://doi.org/10.1021/es00049a002
  12. Yang, J. W., Kim, S. J., Park, J. Y., and Y. J. Lee (2002), The role of cation on electroosmotic flow in electrokinetic remediation, J. KSEE 24(12), 2183-2190
  13. Lee, H. H. and J. W. Yang (2000), A new method to control electrolytes pH by circulation system in electrokinetic soil remediation, J. Hazard. Mater. 77(1-3), 227-240 https://doi.org/10.1016/S0304-3894(00)00197-7
  14. Baltch, A. L., Smith, R. P., Franke, M. A., Ritz, W. J., Michelsen, P., Bopp, L. H., and J. K. Singh (2000), Microbicidal activity of MDI-P against Candida albicans, Staphylococcus aureus, Pseudomonas aeruginosa, and Legionella pneumophila, Am. J. Infect. Control 28(3), 251-257 https://doi.org/10.1067/mic.2000.105287
  15. Acar, Y. B. and A. N. Alshawabkeh (1997), Electrochemical decontamination of soil and water, J. Hazard. Mater. 55(1-3), 322 https://doi.org/10.1016/S0304-3894(97)00010-1
  16. Yang, J. W., Park, J. Y., Kim, S. J., and Y. J. Lee (2003), Understanding of electroosmosis in surfactant-enhanced electrokinetic remediation, J. of KSEE 25(1), 73-78
  17. Cooper, D. A., Peterson, K., and D. Simpson (1996), Hydrocarbon, PAH and PCB emissions from ferries: A case study in the Skagerak- Kattegatt-Oresund region, Atmos. Environ. 30(14), 2463- 2473 https://doi.org/10.1016/1352-2310(95)00494-7
  18. Zhu, W. H., Ke, J. J., Yu, H. M., and D. J. Zhang (1995), A study of the electrochemistry of nickel hydroxide electrodes with various additives, J. Power Sources, 56(1), 75-79 https://doi.org/10.1016/0378-7753(95)80011-5
  19. Jeong, H. I. (1998), Geotechnical engineering, Yurim, Taeun Publishers, Republic of Korea
  20. Pierzynski, G. M., Sims, J. T., and G. F. Vance (1994), Soils and environmental quality, Lewis Publishers, CRC Press Unc., U.S.A.
  21. Rietz, D. N. and R. J. Haynes (2003), Effects of irrigation-induced salinity and sodicity on soil microbial activity, Soil Bio. Biochem. 35(6), 845-854 https://doi.org/10.1016/S0038-0717(03)00125-1
  22. Vogel, T. M., D. Grbic-Galic (1986), Incorporation of Oxygen from Water into Toluene and Benzene during Anaerobic Fermentative Transformation, Applied Environ. Microbiol. 52(1) 200-202