Isolation and Characterization of a Strain for Economical Ethanol Production

경제적 에탄올 생산을 위한 균주분리 및 특성

  • Han, Hyo-Jung (Department of Environmental Engineering, Chonnam National University) ;
  • Kim, Seong-Jun (Department of Environmental Engineering, Chonnam National University)
  • 한효정 (전남대학교 공과대학 환경공학과) ;
  • 김성준 (전남대학교 공과대학 환경공학과)
  • Published : 2006.08.30

Abstract

Five strains producing ethanol were isolated from soil near traditional alcohol production factory in Gwangju, Korea. One of the isolated strains maintained relatively stable ethanol production in shaking culture. The isolated strain KJ was proved to be Saccharomyces italicus, based on several biochemical and morphological tests containing assimilation of carbon compounds. In investment of the most suitable carbon for ethanol production, ethanol concentration of 5.46 g/L and yield of 0.53 g-ethanol/g-glucose were obtained in condition of glucose 10 g/L in YM medium. Experimental optimal conditions for ethanol fermentation by S. italicus KJ were as follows; temperature $30^{\circ}C$, initial pH 5.0, initial concentration 10% of glucose, anaerobic condition in the liquid cultivation. When enzymatically saccharified food wastes(SFW) were used as the production medium, ethanol production yield was 0.57 g-ethanol/g-reducing sugar. Therefore, SFW will contribute to lower the production cost of ethanol for industrial application.

주정공장 근처 토양에서 분리한 에탄올 발효균주 KJ는 Saccharomyces italicus로 판명되었으며, glucose가 최적의 탄소원으로 확인되었다. 균주 KJ의 최적배양조건은 온도 $30^{\circ}C$, 초기 당 농도 10%, 초기 pH 5 근방, 혐기조건으로 판명되었다. 초기 탄소원이 동일한 조건에서 YM배지(glucose 10 g/L)와 SFW배지(RS 10 g/L)에서 에탄올 생산은 각각 5.34, 5.68 g/L로 나타나, KJ균주는 음식물쓰레기 당화액을 에탄올 발효배지로 적절하게 사용될 수 있음이 확인되었다. 에탄올 생산배양에 SFW의 이용은 에탄올생산단가를 대폭 낮추게 하여 대체에너지인 에탄올의 대량생산기술의 경제성을 확보하는데 크게 기여할 것이다.

Keywords

References

  1. Brandt, D., In S, S, sofer, and O. R. Zaborski (ed.) (1981), Ethanol production by fermentation, Biomass conversion process for energy and fuel, Plenum Press, New York, 357-373
  2. 김재윤, 임태윤 (2003), 수소에너지 혁명을 주도하는 연료전지, CEO information 432호, 1-24
  3. 조강래, 김종춘, 엄명도, 박용희, 김수연, 홍유덕, 김선문, 한상묵 (1994), 알콜 혼합연료 사용 휘발유 자동차의 배출가스 및 에너지소비효율에 관한 연구, 국립환경연구원 자동차공해연구소
  4. Lee, Y. S., W. G. Lee, B. G. Park, Y. K. Chang, and H. N. Chang (1995), Ethanol production f개m tapioca hydrolysate by batch and continuous cell retention cultures, Korean J. Biotechnol. Bioeng. 10, 598-603
  5. Song, B. L. (1994), Modelling of cellulose simultaneous saccharification and fermentation process and application to ethanol production, Seoul National University
  6. Hong, J. H. and J. D. Chung (2005), Effect of broth oh purple photosynthetic bacteria on garbage, J. Korea Society of Waste Management 22, 113-119
  7. Kim, K. C., S. S. Yoo, Y. A. Oh, and S. J. Kim (2003), Isolation and characteristics of Trichoderma harzianum FJ1 producing cellulases and xylanase, J. Microbiol. Biotechnol. 13, 1-8
  8. Kim, K. C., S. W. Kim, M. J. Kim, and S. J. Kim (2005), Saccharification of foodwastes using cellulolytic and amylolytic enzymes from Trichoderma harzianum FJ1 and its kinetics, Biotechnol. Bioprocess Eng. 10, 52-59 https://doi.org/10.1007/BF02931183
  9. Barnett, J. A., R. W. Payne, and D. Yarrow (1983), Yeasts: Characteristics and identification, p644-647, Cambridge University Press, New York
  10. Thomas, M. W. and K. M. Bhat (1998), Methods for measuring cellulase activities, Method Enzymol., 160, 87-112
  11. Ryu, B. H., K. D. Nam, H. S. Kim, Y. A. Ji, and S. J. Jung (1988), Screening of thermotolerant yeast strain for ethanol fermentation, Kor. J. Appl. Microbiol. Bioeng. 16, 265-269
  12. Sree, N. K., M. Sridhar, L. V. Rao, and A. Pandey (1999), Ethanol production in solid substrate fermentation using thermotolerant yeast, Process Biochem. 34, 115-119 https://doi.org/10.1016/S0032-9592(98)00074-0
  13. Schaefer, E. J. and C. L. Cooney (1982), Production of maltase by wild-type and a constitutive mutant of Saccharomyces italicus, Appl. and Environ. Microbiol. 43, 75-80
  14. Ligthem, M. E., B. A. Prior, and J. C. Du Preez (1988), The oxygen requirments of yeasts for the fermentation of D-xylose and D-glucose to ethanol, Appl. Microbiol. Biotechnol. 28, 63-68 https://doi.org/10.1007/BF00250500
  15. Yamamura, M., K. Takes, and T. Kanihare (1991), Saccharomyces yeast cells gram at elevated temperatures are susceptible to autolysis, Agric, Biol. Chem. 55, 2861-2864 https://doi.org/10.1271/bbb1961.55.2861