교정용 와이어 및 브라켓에 이산화티탄 광촉매 코팅 시 코팅방법에 따른 비교연구

A comparative study of physical properties of $TiO_2$ thin films according to a coating method on orthodontic wires and brackets

  • 고은희 (전남대학교 치과대학 교정학교실) ;
  • 조진형 (전남대학교병원 교정과)
  • Koh, Eun-Hee (Department of Orthodontics, School of Dentistry, Chonnam National University) ;
  • Cho, Jin-Hyoung (Department of Orthodontics, Chonnam National University Hospital)
  • 발행 : 2006.12.31

초록

본 연구는 항 교정장치의 개발에 도움이 되고자 이산화티탄 광촉매의 코팅 시 안정적이고 효과적인 방법을 찾기 위하여 시행되었다. 시판되고 있는 교정용 와이어와 브라켓에 sol-gel법, CVD (Chemical Vapor Deposition)법 및 PE-CVD (Plasma Enhanced-CVD)법으로 이산화티탄을 각각 코팅한 다음 각 방법으로 코팅된 이산화티탄 박막의 특성을 알아보고자 주사전자현미경을 이용하여 각 시편의 코팅박막 표면의 거칠기를 관찰하였고 adhesive tape pull test를 이용하여 코팅박막의 접착강도를 측정하였다. 메틸렌블루용액에 각 시편을 침지시킨 후 시간경과에 따른 메틸렌블루용액의 농도변화 측정을 통해 코팅박막의 분해능을 평가하였으며 불화나트륨 용액에 각 시편을 침지시킨 후 주사전자현미경을 이용하여 표면부식 정도를 관찰함으로써 불소화합물에 대한 내부식성을 평가하여 다음과 같은 결과를 얻었다. 코팅박막의 표면은 CVD법 및 PE-CVD법이 sol-gel법이나 코팅되지 않은 시편에 비해 더 매끄러웠다. 코팅박막의 접착강도는 PE-CVD법이 가장 높았고, CVD법, sol-gel법의 순으로 낮게 나타났다. 코팅박막의 메틸렌블루 분해능은 PE-CVD법이 가장 높았고, CVD법, sol-gel법의 순으로 낮게 나타났다. 코팅박막의 불소화합물에 대한 내부식성은 CVD법 및 PE-CVD법이 sol-gel법에 비해 높게 나타났다. 이상의 결과는 교정용 와이어 및 브라켓의 이산화티탄 광촉매 코팅 시 CVD법 및 PE-CVD법이 sol-gel법보다 적절한 방법임을 시사하였다.

The purpose of this study was to search for an appropriate method of coating $TiO_2$ on orthodontic appliances. $TiO_2$ thin films were deposited on orthodontic wires and brackets using sol-gel, CVD (Chemical Vapor Deposition) and PE-CVD (Plasma Enhanced-CVD) methods. The roughness of $TiO_2$-coated surfaces was investigated via scanning electron microscope (SEM) and adhesive strength of $TiO_2$ thin films was measured by adhesive tape pull test. Methylene blue degradation test was carried out to evaluate the photocatalytic activity of $TiO_2$ and the corrosion resistance of $TiO_2$ thin films against fluoride solution was also analyzed by observing the surfaces of $TiO_2$-coated wires and brackets via SEM after immersion in sodium fluoride solution. Through the comparison of properties and photocatalytic activity of $TiO_2$ thin films according to the coating methods, the following results were obtained. Smoother surfaces of $TiO_2$ thin films were generated by CVD or PE-CVD methods than through the sol-gel method or the control. Adhesive strength of the $TiO_2$ thin films was highest in PE-CVD and gradually became lower in the order of CVD, then the sol-gel method. Photocatalytic activity of $TiO_2$ thin films on methylene blue was the highest in PE-CVD and gradually became lower in the order of CVD, then the sol-gel method. Corrosion resistance of $TiO_2$ thin films against fluoride solution was stronger in CVD and PE-CVD methods than in the sol-gel method. The results of this study suggest that the CVD or PE-CVD methods is more appropriate than the sol-gel method for $TiO_2$ coating on orthodontic wires and brackets.

키워드

참고문헌

  1. Ko BY, Kim KI, Park CG, Park YS, Photocatalyst. Daejeon: KISTI; 2002. p. 1-11
  2. Honda K, Fujishima A. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972;238:37-8 https://doi.org/10.1038/238037a0
  3. Matsunaga T, Tomada R, Nakajima T, Wake G. Photochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 1985;29:211-4 https://doi.org/10.1111/j.1574-6968.1985.tb00864.x
  4. Cai R, Kubota Y, Shuin T, Sakai H, Hashimoto K, Fujishima A. Induction of cytotoxicity by photoexcitated $TiO_2$ particles. Cancer Res 1992;52:2346-8
  5. Schwietert CW, Yaghoubi S, Gerber NC, McSharry JJ, McCue JP. Dietary titanium and infant growth. Biol Trace Elem Res 2001;83:149-67 https://doi.org/10.1385/BTER:83:2:149
  6. Wei C, Lin WY, Zainal Z, Williams NE, Zhu K, Kruzic AP, et al. Bactericidal activity of $TiO_2$ photocatalyst in aqueous media: toward a solar-assisted water disinfection system. Environ Sci Technol 1994;28:934-8 https://doi.org/10.1021/es00054a027
  7. Zhang T, Oyama T, Horikoshi S, Hidaka H, Zhao J, Serpone N. Photocatalyzed N-demethylation and degradation of methylene blue in titania dispersions exposed to concentrated sunlight. Solar Energy Mater Solar Cells 2002;73:287-303 https://doi.org/10.1016/S0927-0248(01)00215-X
  8. Bolduc L, Anderson WA. Enhancement of the biodegradability of model wastewater containing recalcitrant or inhibitory chemical compounds by photocatalytic pre-oxidation. Biodegradation 1997;8:237-49 https://doi.org/10.1023/A:1008221222846
  9. Lee KH, Chang DY, Jeong YS, Tendency of research about photocatalyst fixation technique. Machines and Materials 1999;11:94-104
  10. Lee JM, Kim MS, Kim BW. Photodegradation of bisphenol-A with $TiO_2$ immobilized on the glass tubes including the UV light lamps. Water Res 2004;38:3605-11 https://doi.org/10.1016/j.watres.2004.05.015
  11. Daneshvar N, Salari D, Niaei A, Rasoulifard MH, Khataee AR. Immobilization of $TiO_2$ nanopowder on glass beads for the photocatalytic decolorization of an azo dye C.I. Direct Red 23. J Environ Sci Health A Tox Hazard Subst Environ Eng 2005;40:1605-17 https://doi.org/10.1081/ESE-200060664
  12. Yang Q, Guo F, Xing Y, Xian CJ, Guo BW. Photocatalytic degradation of low level formaldehyde on $TiO_2$ porous film. Huan Jing Ke Xue 2005;26:35-9
  13. Zhu YF, Li W. Raman spectrum research on structure and performance of nanometer $TiO_2$ film photocatalyst supported on stainless steel netweb. Guang Pu Xue Yu Guang Pu Fen Xi 2003;23:494-7
  14. Giavaresi G, Giardino R, Ambrosio L, Battiston G, Gerbasi R, Fini M, et al. In vitro biocompatibility of titanium oxide for prosthetic devices nanostructured by low pressure metal-organic chemical vapor deposition. Int J Artif Organs 2003;26:774-80 https://doi.org/10.1177/039139880302600811
  15. Mills A, Lee SK, Lepre A, Parkin IP, O'Neill SA. Spectral and photocatalytic characteristics of $TiO_2$ CVD films on quartz, Photochem Photobiol Sci 2002;11:865-8
  16. Gracia F, Holgado JP, Gonzalez-Elipe AR. Photoefficiency and optical, microstructural, and structural properties of $TiO_2$ thin films used as photoanodes. Langmuir 2004;20:1688-97 https://doi.org/10.1021/la034998y
  17. Sonawane RS, Hegdc SG, Dongare MK. Preparation of titanium (IV) oxide thin film photocatalyst by sol-gel dip coating. Mater Chem Phys 2002;77:744-50
  18. Zainal Z, Lee CY, Hussein MZ, Kassim A, Yusof NA. Electrochemicalassisted photodegradation of dye on $TiO_2$ thin lilms: investigation on the effect of operational parameters. J Hazard Mater 2005;118:197-203 https://doi.org/10.1016/j.jhazmat.2004.11.009
  19. Gluszek J, Masalski J, Furman P, Nitsch K. Structural and electrochemical examinations of PACVD $TiO_2$ films in Ringer solution. Biomaterials 1997;18:789-94 https://doi.org/10.1016/S0142-9612(96)00210-4
  20. Ovejero G, Sotelo .JL, Martinez F, Gordo L. Novel heterogeneous catalysts in the wet peroxide oxidation of phenol. Water Sci Technol 2001;44:153-60
  21. Kim SW, Kang M, Choung SJ. Preparation of a $TiO_2$ film using a TEOS binder and its application to the photodegradation of benzene. J Ind Eng Chem 2005;11:416-24
  22. Nie X, Leyland A, Matthews A, Jiang JC, Meletis El. Effects of solution pH and electrical parameters on hydroxyapatite coatings deposited by a plasma-assisted electrophoresis technique. J Biomed Mater Res 2001;57: 612-8 https://doi.org/10.1002/1097-4636(20011215)57:4<612::AID-JBM1208>3.0.CO;2-H
  23. Kwon CH, Shin H, Kim JH, Choi WS, Yoon KH. Degradation of methylene blue via photocatalysis of titanium deoxide. Mater Chem Phys 2004;86:78-82 https://doi.org/10.1016/j.matchemphys.2004.02.024
  24. Scheie AA, Arneberg P, Krogstad O. Effect of orthodontic treatment on prevalence of Streptococcus mutans in plaque and saliva. Scand J Dent Res 1984;92:211-7
  25. Jeong SK, Lee KH, Kim SM. Study for caries activities of children who wear removable orthodontic appliances. Daegu Health Report 1990;16:12-27
  26. Gorelick L, Geiger AM, Gwinnet AJ. Incidence of white spot formation after bonding and banding. Am J Orthod 1982;81:93-8 https://doi.org/10.1016/0002-9416(82)90032-X
  27. Ogaard B, Rolla G, Arends J. Orthodontic appliances and enamel demineralization. Part 1. Lesion development. Am J Orthod Dentofacial Orthop 1988;94:68-73 https://doi.org/10.1016/0889-5406(88)90453-2
  28. Ingerball B. The influence of orthodontic appliances on caries frequency. Odontol Revy 1962;13:175-90
  29. Kim KN, Kim KH, Kim HL, Park YJ, Bae TS, Im HN. Dental materials. Seoul: Jiseong Press 1995. p.330-49
  30. Advisory board of orthodontic professors, Orthodontics. Jiseong Press; 1998. p.328-31
  31. Furuzono T, Wang PL, Korematsu A, Miyazaki K, Oido-Mori M, Kowashi Y, et al. Physical and biological evaluations of sintered hydroxyapatite/silicone composite with covalent bonding for a percutaneous implant material. J Biomed Mater Res B Appl Biomater 2003;65:217-26
  32. Olsson J, Carlen A, Holmberg K., Inhibition of Streptococcus mutans adherence by means of surface hydrophilization. J Dent Res 1990;69:1586-91 https://doi.org/10.1177/00220345900690091001
  33. Soukka T, Tenovuo J, Rundegren .J. Agglutination of Streptococcus mutans serotype c cells but inhibition of Porphyromonas gingivalis autoaggregation by human lactoferrin. Arch oral Biol 1993;38:227-32 https://doi.org/10.1016/0003-9969(93)90032-H
  34. Song YH, Moon HS, Baek DI, Kim JB. Follow-up study for caries prevention effects of water fluoridation. Daegu Health Report 1992;16:452-73
  35. Proffit WR. Contemporary orthodontics. Missouri: Mosby; 2000. p. 351-3
  36. Watanabe I, Watanabe E. Surface changes induced by fluoride prophylactic agents on titanium-based orthodontic wires. Am J Orthod Dentofacial Orthop 2003;123:653-6 https://doi.org/10.1016/S0889-5406(03)00197-5
  37. Kaneko K, Yokoyama K, Moriyama K, Asaoka K, Sakai J, Nagumo M. Delayed fracture of beta titanium orthodontic wire in fluoride aqueous solutions. Biomaterials 2003;24:2113-20 https://doi.org/10.1016/S0142-9612(02)00642-7
  38. Schiff N, Grosgogeat B, Lissac M, Dalard F. Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys. Biomaterials 2002;23: 1995-2002 https://doi.org/10.1016/S0142-9612(01)00328-3
  39. Yamagishi M, Kuriki S, Song PK, Shigesato Y. Thin film $TiO_2$ photocatalyst deposited reactive magnetron sputtering. Thin Solid Films 2003;442:227-31 https://doi.org/10.1016/S0040-6090(03)00987-8