Antioxidant, Antimicrobial, and Antitumor Activities of Partially Purified Substance(s) from Green Tea Seed

  • Choi, Jae-Hoon (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Nam, Jung-Oak (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Kim, Ji-Yeon (Department of Animal Science, Woosong Information College) ;
  • Kim, Jin-Man (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Paik, Hyun-Dong (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Kim, Chang-Han (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
  • 발행 : 2006.10.30

초록

The aim of this study is to evaluate the antioxidant, antimicrobial, and antitumor activities of various concentrations of partially purified substance(s) from green tea seed (Camellia sinensis L.). The total polyphenol contents of each fraction (non-adsorption fraction: F-1, fraction eluted with 40% methanol: F-2, and fraction eluted with 100% methanol: F-3) purified by Diaion HP-20 column chromatography were, in the increasing order: F-1 (3.7 mg tannic acid equivalents, TAB/g) < F-3 (23.2 mg TAB/g) < seed extracts (26.2 mg TAB/g) < F-2 (42.7 mg TAB/g). The scavenging activities toward the 1,1-diphenyl-2-picyrylhydrazyl (DPPH) radical were, in decreasing order: F-2 (93.3%) > butylated hydroxytoluene (BHT; 89.8%) > ascorbic acid (89.3%) > leaf extracts (70.3%) > F-3 (15.9%) > seed extracts (15.8%) > F-1 (14.8%) at a 0.1% concentration. In studies on antimicrobial activities, the results indicate that the growth of yeast (Candida albicans KCCM 11282 and Cryptococcus neoformans KCCM 50544) was inhibited more so than that of other fungi (Alternaria alternate KCTC 6005 and Rhizoctonia solani). In addition, it appears that the antitumor activities of the F-1, F-2, and F-3 fractions at a concentration of $50\;{\mu}g/mL$ showed 6, 7, and 23% growth inhibition of the HEC-1B cell line, 14, 11, 82% inhibition of the HEP-2 cell line, and 8, 16, and 81% inhibition of the SK-OV-3 cell line, respectively. Overall these results indicate that the antioxidant activity is greatest in the F-2 fraction, and the antimicrobial and antitumor activities are greatest in the F-3 fraction.

키워드

참고문헌

  1. Chung SK, Kim MY, Kim YC, Iwai K, Matsue H. Antioxidant effects of Korean teabag teas by a simple and fast XYZ dish method. Food Sci. Biotechnol. 13: 197-201 (2004)
  2. Millin DJ. Factors affecting quality of tea. pp. 127-160. In: Quality Control in the Food Industry. Herschduerter SM (ed). Academic Press, London, UK (1987)
  3. Fassina G, Buffa A, Benellir R, Vamier OE, Noonan DM, Albini A. Polyphenolic antioxidant (-)-epigallocatechin-3-gallate from green tea as a candidate anti-HIV agent. AIDS 16: 939-941 (2002) https://doi.org/10.1097/00002030-200204120-00020
  4. Mabe K, Yamada M. In vitro and in vivo activities of tea catechins against Helicobacter pylori. Antimicrob. Agents Ch. 43: 1788-1791 (1999)
  5. Sakanaka S, Juneja L, Taniguchi M. Antimicrobial effects of green tea polyphenols on thermophilic spore-forming bacteria. J. Biosci. Bioeng. 90: 81-85 (2000) https://doi.org/10.1016/S1389-1723(00)80038-9
  6. Li X., Elsohly HN, Nimrod AC, Clark AM. Antifungal activity of (-)-epigallocatechin gallate from Coccoloba dugandiana. Planta Med. 65: 780 (1999)
  7. Calzada F, Meckes M, Cedillo-River R. Antiamoebic and antigardial activity of plant flavonoids. Planta Med. 65: 78-80 (1999) https://doi.org/10.1055/s-2006-960445
  8. Yang CS, Chung JY, Yang GY, Chhabra SK, Lee MJ. Tea and tea polyphenols in cancer prevention. J. Nutr. 130: 472S-478S (2000)
  9. Cao Y, Cao R. Angiogenesis inhibited by drinking tea. Nature 398: 381 (1999) https://doi.org/10.1038/18793
  10. Ogutuga DBA, Northcote DH. Caffeine formation in tea callus tissue. J. Exp. Bot. 21: 258-273 (1970) https://doi.org/10.1093/jxb/21.2.258
  11. Takeo T. L-Alanine as a precursor of ethylamine in Camellia sinensis. Phytochemistry 13: 1401-1406 (1974) https://doi.org/10.1016/0031-9422(74)80299-2
  12. Matsuura T, Kakuda T. Effects of precursor temperature and illumination on theanine accumulation in tea callus. Agr. Biol. Chem. Tokyo 54: 2283-2286 (1990) https://doi.org/10.1271/bbb1961.54.2283
  13. Shervington A, Shervington LA, Afifi F, El-omari MA. Caffeine and theobromine formation by tissue cultures of Camellia sinensis. Phytochemistry 47: 1535-1536 (1998) https://doi.org/10.1016/S0031-9422(97)01087-X
  14. Yoon WH, Choi JH., Lee KH, Kim CH. Antimicrobial and antitumor activities of seed extracts of Camellia sinensis L. Korean J. Food Sci. Technol. 37: 108-112 (2005)
  15. Hiller K. New results on the structure and biological activity of triterpenoid saponins. pp. 167-184. In: Biologically Active Natural Products. Hostettmann K, Lea PJ (eds). Clarendon Press, London, UK (1987)
  16. Das M, Sur P, Gomes A, Vedasiromoni, Ganguly DK. Inhibition of tumor growth and inflammation by consumption of tea. Phytother. Res. 16: 40-44 (2002) https://doi.org/10.1002/ptr.797
  17. Gupta S, Hastak K, Ahmad N, Lewin JS, Mukhtar H. Inhibition of prostate carcinogenesis in TRMP mice by oral infusion of green tea polyphenol. P. Natl. Acad. Sci. USA 98: 10350-10355 (2001)
  18. Kuo P-L, Lin C-C. Green tea constituent (-)-epigallocatechin-3-gallate inhibits Hep G2 proliferation and induces apoptosis through p53-dependent and fas-mediated pathways. J. Biomed. Sci. 10: 219-227 (2003)
  19. Yang CS, Maliakal P, Meng X. Inhibition of carcinogenesis by tea. Ann. Rev. Pharmacol. 42: 25-54 (2002) https://doi.org/10.1146/annurev.pharmtox.42.082101.154309
  20. AOAC. Official Method of Analysis of AOAC Intl. 14th ed. Method 876. Association of Official Analytical Communities, Washington, DC, USA (1980)
  21. Folin O, Denis W. On phosphotungastic-phosphomolybdic compounds as color reagents. J. Biol. Chem. 12: 239-243 (1912)
  22. Boo HO, Chon SU, Kim SM, Pvo BS. Antioxidant activities of colored sweet potato cultivars by plant parts. Food Sci. Biotechnol. 14: 177-180 (2005)
  23. Bae JH. Antimicrobial effect of Sophora angustifolia extracts on food-borne pathogens. Food Sci. Biotechnol. 14: 311-316 (2005)
  24. Strekova VY, Zagoskina NV, Subbotina GA, Zaprometev MN. Effect of prolonged illumination on synthesis of phenolic compounds and chloroplast formation in tea callus tissues. Sov. Plant Physiol. 36: 65-71 (1989)
  25. Yang JK, Gang BK, Kim JM, Park YG, Choi MS. Physico-chemical properties and composition of fatty acids from seed oil of Camellia sinensis L. J. Korean Tea Soc. 6: 83-91 (2000)
  26. Rah HH, Baik SO, Han SB, Bock JY. Chemical compositions of the seed of Korean green tea plant. J. Korean Soc. Appl. Biol. Chem. 35: 272-275 (1992)
  27. Chen JH, Ho CT. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J. Agr. Food Chem. 45: 2374-2378 (1997) https://doi.org/10.1021/jf970055t
  28. Sagesakc Y, Uemura T, Suzuki Y, Sugirua T, Yoshida M, Yamaguchi K, Kyuki K. Antimicrobial and anti-inflammatory actions of tea-leaf saponin. Yakugazu Zasshi 116: 238-243 (1996) https://doi.org/10.1248/yakushi1947.116.3_238
  29. Kawai A, Mukai T, Horie H, Kohata K. Control effect of tea seed saponins against insect pests and mites. J. Tea Res. 87: 7-12 (1999)
  30. Minoru T, Sumito Y, Kanoko Y, Hajime O, Tadaxhi YG, Katsunori K, Jan AB. Theasaponin $E_{1}$ destroys the salt tolerance of yeasts. J. Biosci. Bioeng. 90: 637-642 (2000) https://doi.org/10.1263/jbb.90.637
  31. Zhendan H, Chunfeng Q, Quanbin H, Ying W, Wencai Y, Hongzi Z. New triterpenoid saponins from the roots of Platycodon grandiflorum. Tetrahedron 61: 2211-2215 (2005) https://doi.org/10.1016/j.tet.2004.12.032
  32. Sparg SG, Light ME, Staden J. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 94: 219-243 (2004) https://doi.org/10.1016/j.jep.2004.05.016