• Title/Summary/Keyword: Heated Anaerobic Mixed

Search Result 4, Processing Time 0.018 seconds

Anaerobic Biotreatment of Animal Manure - A review of current knowledge and direction for future research -

  • Hong, Jihyung
    • Journal of Animal Environmental Science
    • /
    • v.11 no.2
    • /
    • pp.97-102
    • /
    • 2005
  • Anaerobic decomposition is one of the most common processes in nature and has been extensively used in waste and wastewater treatment for several centuries. New applications and system modifications continue to be adapted making the process either more effective, less expensive, or suited to the particular waste in question and the operation to which it is to be applied. Animal manure is a highly biodegradable organic material and will naturally undergo anaerobic fermentation, resulting in release of noxious odors, such as in manure storage pits. Depending on the presence or absence of oxygen in the manure, biological treatment process may be either aerobic or anaerobic. Under anaerobic conditions, bacteria carry on fermentative metabolisms to break down the complex organic substances into simpler organic acids and then convert them to ultimately formed methane and carbon dioxide. Anaerobic biological systems for animal manure treatment include anaerobic lagoons and anaerobic digesters. Methane and carbon dioxide are the principal end products of controlled anaerobic digestion. These two gases are collectively called biogas. The biogas contains $60\~70\%$ methane and can be used directly as a fuel for heating or electrical power generation. Trace amounts of ammonia and hydrogen sulfide ($100\~300\;ppm$) are always present in the biogas stream. Anaerobic lagoons have found widespread application in the treatment of animal manure because of their low initial costs, ease of operation and convenience of loading by gravity flow from the animal buildings. The main disadvantage is the release of odors from the open surfaces of the lagoons, especially during the spring warm-up or if the lagoons are overloaded. However, if the lagoons are covered and gases are collected, the odor problems can be solved and the methane collected can be used as a fuel. Anaerobic digesters are air-tight, enclosed vessels and are used to digest manure in a well-controlled environment, thus resulting in higher digestion rates and smaller space requirements than anaerobic lagoons. Anaerobic digesters are usually heated and mixed to maximize treatment efficiency and biogas production. The objective of this work was to review a current anaerobic biological treatment of animal manure for effective new technologies in the future.

  • PDF

Investigation of the Optimum Operational Condition of Bio-Hydrogen Production from Waste Activated Sludge (폐활성 슬러지로부터 생물학적 수소 생산을 위한 최적 조건 연구)

  • Kim, Dong-Kun;Lee, Yun-Jie;Yu, Myong-Jin;Pak, Dae-Won;Kim, Mi-Sun;Sang, Byoung-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.362-367
    • /
    • 2006
  • Waste activated sludge(WAS) collected from domestic wastewater treatment plant is biomass that contains large quantities of organic matter. However, relevant literature show that the bio-hydrogen yield using WAS was too low. In this study, the effect of pretreatment of WAS on hydrogen yield was investigated. Pretreatment includes acid and alkali treatments, grinding, heating, ozone and ultrasound methods. After pretreatment organic matters of WAS were solubilized and soluble chemical oxygen demand(SCOD) was increased by 14.6 times. Batch experiments were conducted to investigate the effects of pre-treatment methods and buffer solution, hydrogen partial pressure, and sodium ion on hydrogen production from WAS by using heated anaerobic mixed cultures. Experimental results showed that addition of buffer solution, efficient pre-treatment method with alkali solution, and gas sparging condition markedly increased the hydrogen yield to 0.52 mmol $H_2/g$-DS.

THE EFFECTS OF OPERATIONAL AND FINANCIAL FACTORS ON THE ECONOMICS OF BIOGAS PRODUCTION FROM DAIRY COW FECES AND WASTEWATER

  • Kobayashi, S.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.1
    • /
    • pp.139-145
    • /
    • 1993
  • Biogas created from animal waste is a precious energy source. A practical and successful utilization of the biogas is not easy, because there lie some difficulties in biogas production and facilities investment. In this study, the requisites for a successful biogas utilization were discussed. The production results obtained in the previous operation of anaerobic digestion plant were used for the simulation. When the slurry heating was designed for constant biogas generation, depreciation costs of the facilities amounted 1,175,000 yen per year, and biogas productions at $24.5^{\circ}C$, $30.0^{\circ}C$ and $35.5^{\circ}C$ were $16.8m^3$, $17.6m^3$ and $25.1m^3$, respectively. Removal ratios of organic matters were not so high. At $35.5^{\circ}C$, energy value of the biogas produced was estimated 125.5 Mcal per day, and the following heat loss (y Mcal/day) was brought about by the temperature difference ($X^{\circ}C$) between the digester and atmosphere; y = 0.769X - 5.375. The costs of biogas production per cow were assumed to decrease according to enlargement of feeding scale, especially on scales of more than 30 cows. On recent levels of costs and prices of energy in Japan, they were nearly equal to 2 to 3 fold of the price of municipal mixed gas when a anaerobic digester was compulsorily heated and kept at $30.0^{\circ}C$ or $35.5^{\circ}C$.

Effect on Digestion Efficiency by Adding Microbial Agent in Mesophilic Two-stage Anaerobic Digester (중온2단혐기성소화조에 미생물제재 주입시 소화효율에 미치는 영향)

  • Jung, Byung-Gil;Kim, Seok-Soon;Kang, Dong-Hyo;Sung, Nak-Chang;Choi, Seung-Ho;Lee, Hee-Pom
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.3
    • /
    • pp.75-86
    • /
    • 2003
  • In the near future, the capacity of conventional anaerobic digester is thought to be insufficient because of the increase of the total solids from expansion of intercepting sewer, sewage quantity and direct input of night soil from near apartment districts. The objectives of this study was to investigate the improvement of digestion efficiency using microbial agent(Bio-dh). The system was a pilot-scale, two-staged, anaerobic sludge digestion system. The first-stage digester was heated and mixed. The agitation velocity of the first-stage digester was 120rpm. The second-stage digester was neither heated nor mixed. The Digestion temperature was kept at $35{\pm}1^{\circ}C$ The detention time of digester was 19 days. The dosage of sewage sludge and microbial agent were $0.65m^3/day$ and $0.5{\ell}/day$, respectively. The experiments was run for 25days. Three times a week, $COD_{Mn}$ and SS of effluent, TS, VS, and biogas production rate were measured. Temperature, pH, and alkalinity were measured daily. The results were as follows ; Without microbial agent, digestion efficiencies ranged 46.0%~50.9%(mean=48.6%), with microbial agent(Bio-dh), digestion efficiencies ranged 52.8%~57.3%(mean=54.2%). Consequently, microbial agent(Bio-dh) increased the sludge digestion efficiency about 12%. Also, Without microbial agent, the mean concentration of $COD_{Mn}$ and SS of second-stage digester effluent were 1,639mg/L, 4,888mg/L respectively. With microbial agent, the mean concentration of $COD_{Mn}$ and SS of second-stage digester effluent were 859mg/L, 2,405mg/L respectively. Consequently, microbial agent(Bio-dh) increased the removal efficiency of $COD_{Mn}$ and SS about 47.6% and 50.8%, respectively.

  • PDF