Preparation of $MnO_2$-Coated Sand and Oxidation of As(III)

$MnO_2$-코팅 모래흡착제 제조 및 As(III) 산화처리 적용

  • Jung, Jae-Hyun (Department of Environmental Engineering, Kwangwoon University) ;
  • Yang, Jae-Kyu (Department of Environmental Engineering, Kwangwoon University) ;
  • Song, Ki-Hoon (Department of Environmental Engineering, Kwangwoon University) ;
  • Chang, Yoon-Young (Department of Environmental Engineering, Kwangwoon University)
  • Published : 2006.01.31

Abstract

[ $MnO_2$ ]-Coated Sand(MCS) was prepared with variation of coating temperature, coating time, and dosage of initial Fe(III) with two kinds of sands such as Joomoonjin and quartz sand. An optimum condition for the preparation MCS was determined from the coating efficiency as well as the oxidation efficiency of As(III). Coating efficiency of Mn was strongly dependent on the coating temperature but quite similar over the investigated coating time, showing an increased coating efficiency at higher coating temperature. In contrast to coating efficiency, the oxidation efficiency of As(III) by MCS was severely reduced as increase of coaling temperature. By considering these results, an optimum coating temperature and time for the preparation of MCS was selected as $150^{\circ}C$ and 1-hr, respectively. Coating efficiency increased as the dosage of initial Mn(II) increased, while As(III) oxidation was maximum at 0.8 Mn(II) mol/kg sand. The solution pH was identified as an important parameter affecting stability of MCS, and dissolution of Mn from MCS increased as pH decreased. Oxidation rate of As(III) increased as the dosage of MCS increased as well as solution pH decreased.

주문진사 및 석영사를 담체로 사용하여 코팅온도, 코팅시간, 및 초기 망간용액 주입농도를 변화시키면서 망간(IV)을 코팅시킨 모래흡착제($MnO_2$-Coated Sand, MCS)를 제조하였으며 As(III)의 산화효율을 비교하였다. MCS 제조의 최적조건은 코팅효율 및 As(III) 산화능으로 부터 선정하였다. 망간 코팅효율은 코팅시간에는 크게 영향을 받지 않았지만 코팅온도가 증가함에 따라 증가하였다. 반면 As(III)의 산화능은 코팅온도가 증가됨에 따라 크게 감소하여 나타났다. 이러한 결과들을 고려하여 MCS의 최적 코팅 조건을 $150^{\circ}C$ 온도조건과 1시간의 가열시간으로 선정할 수 있었다. Mn(II) 주입농도가 늘어남에 따라 망간 코팅효율은 뚜렷이 증가하였지만 As(III)의 산화능은 0.8 Mn(II) mol/kg sand 조건에서 최대값을 보여주었다. MCS로 부터의 망간의 용출은 pH가 감소함에 따라 크게 증가하여 나타났다. 최적 조건에서 제조한 MCS를 사용하여 As(III)의 산화반응 특성을 회분식 실험을 통하여 조사한 결과, MCS의 As(III) 산화특성은 MCS의 농도에 대하여 비례적인 반응속도를 보여주었으며 pH가 감소할수록 As(III)의 산화속도가 증가하였다.

Keywords

References

  1. Nikolaidis, N. P., Lackovic, J., and Dobbs, G., 'Arsenic Remediation Technology-AsRT,'(Available at http://www. eng2.uconn.edu/nikos/asrtbrochure.html)
  2. Welch, A. H., Westjohn, D. B., Helsel, D. R., and Wanty, R. B., 'Arsenic in ground water of the United States : Occurrence and geochemistry,' Ground Water, 38(4), 589 - 604(2000) https://doi.org/10.1111/j.1745-6584.2000.tb00251.x
  3. 이지민, 전효택, '동일광산의 자연수 및 하상 퇴적물내 비소의 화학종에 따른 거동 특성,' 환경지질연구정보센터(2004)
  4. 전효택, 임혜숙, '송천 Au-Ag-Mo 광산 주변지역의 비소 및 중금속 원소들의 환경오염 특성,' 환경지질연구정보 센터(2003)
  5. 김명진, 안규홍, 정예진, '토양에서의 비소흡착. 반응속도 빙 흡착평혁' 대한환경공학회지, 25(4), 407-414(2003)
  6. Masscheleyn, P. H., Delaune, R. D., and W. H. Patrick, Jr, 'Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil,' Environ. Sci. Technol.,25, 1414-1419(1991) https://doi.org/10.1021/es00020a008
  7. Viraraghavan, T., Subramanian, K. S., and Aruldoss, J. A., 'Arsenic in drinking water - problems and solutions,' Water Sci, Technol., 40(2), 69-76(1999)
  8. Ghosh, M. M. and Yuan, J. R., 'Adsortion of arsenic and organoarsenicals on hydrous oxides,' Environmental progress, 6(3), 150-157(1987) https://doi.org/10.1002/ep.670060325
  9. 7Faust, S. D., Winka, A. J., and Belton, T., 'Assessment of chemical and biological significant of arsenical species in the Maurice River drainage basin (NJ) Part I : Distribution in water and river and lake sediments,' J Environ. Sci. Health, A22, 203 -237(1987)
  10. Nishimura, T. and Umetsu, Y, 'Oxidative precipitation of arsenic(III) with manganese(II) and iron(II) in dilute acidic solution by ozone,' Hydrometallurgy, 62, 83 - 92 (2001) https://doi.org/10.1016/S0304-386X(01)00188-8
  11. Christophe Tournassat, Laurent Charlet, Dirk Bosbach, Alain Manceau, 'Arsenic(III) oxidation by bimesite and precipitation of manganese(II) arsenate,' Environ. Sci. Technol', 36, 493 - 500(2002) https://doi.org/10.1021/es0109500
  12. Frank, P. and Clifford, D., 'Arsenic(III) oxidation and removal from drinking water,' US-EPA, 600/S2-86/O21, Washington, D. C.(1986)
  13. Yang, J. K., Chang, Y. Y., Kim, K. S., Jung, J. H., and Park, J. K., 'Simultaneous Treatment of both As(III) and As(V) with Iron-Coated Sand(ICS) and Manganese-Coated Sand(MCS),' Presented in EGU General Assembly 2005, Vienna, Austria, April(2005)
  14. Eary, L. E. and Schramke, L. A., 'Rates of inorganic oxidation reactions involving dissolved oxygen, in Chemical Modeling of Aqueous Systems,' II, D. C. Melchior and R. L. Bassett, eds., ACS Symp. Ser., 416, 379-396(1990)
  15. Oscarson, D. W., Huang, P. M., and Liaw, W. K., 'Role of manganese in the oxidation of arsenite by freshwater lake sediments,' clays clay Miner, 29, 219-225(1981) https://doi.org/10.1346/CCMN.1981.0290308