A Petrov-Galerkin Natural Element Method Securing the Numerical Integration Accuracy

  • Cho Jin-Rae (School of Mechanical Engineering, Pusan National University) ;
  • Lee Hong-Woo (School of Mechanical Engineering, Pusan National University)
  • Published : 2006.01.01

Abstract

An improved meshfree method called the Petrov-Galerkin natural element (PG-NE) method is introduced in order to secure the numerical integration accuracy. As in the Bubnov-Galerkin natural element (BG-NE) method, we use Laplace interpolation function for the trial basis function and Delaunay triangles to define a regular integration background mesh. But, unlike the BG-NE method, the test basis function is differently chosen, based on the Petrov-Galerkin concept, such that its support coincides exactly with a regular integration region in background mesh. Illustrative numerical experiments verify that the present method successfully prevents the numerical accuracy deterioration stemming from the numerical integration error.

Keywords

References

  1. ANSYS, Inc., 1998, User's Manual (ver, 5.5.1), Houston, PA
  2. Atluri, S. N. and Zhu, T., 1998, 'A New Meshless Local Petrov-Galerkin (MLPG) Approach in Computational Mechanics,' Computational Mechanics, Vol. 22, pp. 117-127 https://doi.org/10.1007/s004660050346
  3. Belikov, V. V., Ivanov, V. D., Kontorovich, V. K., Korytnik, S. A. and Semenov, A. Yu, 1997, 'The Non-Sibsonian Interpolation: a New Method of Interpolation of the Values of a Function on an Arbitrary Set of Points,' Comput. Math. Math. Phys., Vol. 37, pp. 9-15
  4. Belytschko, T., Lu, Y. Y. and Gu, L., 1994, 'Element-free Galerkin Methods,' Int. J. Numer. Methods Engng., Vol. 37, pp.229-256 https://doi.org/10.1002/nme.1620370205
  5. Braun, J. and Sambridge, M., 1995, 'A Numerical Method for Solving Partial Differential Equations on Highly Irregular Evolving Grids,' Nature, Vol. 376, pp. 655-660 https://doi.org/10.1038/376655a0
  6. Cho, J. R. and Lee, S. Y., 2002, 'Dynamic Analysis of Baffled Fuel-Storage Tanks Using the ALE Finite Element Method,' Int. J. Numer. Methods Fluids, Vol. 41, pp. 185-208 https://doi.org/10.1002/fld.434
  7. Cho, J. R. and Oden, J. T., 1997, 'Locking and Boundary Layer in Hierarchical Models for Thin Elastic Structures,' Comput. Methods Appl. Mech. Engrg., Vol. 149, pp. 33-48 https://doi.org/10.1016/S0045-7825(97)00057-1
  8. Cueto, E., Calvo, B. and Doblare, M., 2002, 'Modelling Three-Dimensional Piece-wise Homogeneous Domains Using the Shape-based Natural Element Method,' Int. J. Numer. Methods Engng., Vol. 54, pp. 871-897 https://doi.org/10.1002/nme.452
  9. Dolbow, J. and Belytschko, T., 1999, 'Numerical Integration of the Galerkin Weak Form in Meshfree Methods,' Computational Mechanics, Vol. 23, pp.219-230 https://doi.org/10.1007/s004660050403
  10. Duarte, C. A. and Oden, J. T., 1996, 'An h-p Adaptive Method Using Clouds,' Comput. Methods Appl. Mech. Engrg., Vol. 139, pp.237-262 https://doi.org/10.1016/S0045-7825(96)01085-7
  11. Farin, G., 1990, 'Surface over Dirichlet Tessellations,' Comput. Aided Geom. Des., Vol. 7, No. 1-4, pp. 281-292 https://doi.org/10.1016/0167-8396(90)90036-Q
  12. Green, P. J. and Sibson, R., 1978, 'Computing Dirichlet Tessellations in the Plane,' The Computer Journal, Vol. 21, pp. 168-173 https://doi.org/10.1093/comjnl/21.2.168
  13. Hiyoshi, H. and Sugihara, K., 1999, 'Two Generalization of an Interpolant based on Voronoi Diagrams,' Int. J. Shape Modeling, Vol. 5, pp. 219-231 https://doi.org/10.1142/S0218654399000186
  14. Liu, W. K., Jun, S. and Zhang, Y. F., 1995, 'Reproducing Kernel Particle Methods,' Int. J. Numer. Methods Fluids, Vol. 20, pp. 1081-1106 https://doi.org/10.1002/fld.1650200824
  15. Melenk, J. M. and Babuska, I., 1996, 'The Partition of Unity Finite Element Method: Basic Theory and Applications,' Comput. Methods Appl. Mech. Engrg., Vol. 139, pp. 289-314 https://doi.org/10.1016/S0045-7825(96)01087-0
  16. Nayroles, B., 1992, 'Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements,' Computational Mechanics, Vol. 10, pp. 307-318 https://doi.org/10.1007/BF00364252
  17. Okabe, A., Boots, B. and Sugihara, K., 1992, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, John Wiley & Sons, England
  18. Piper, P., 1993, 'Properties of Local Coordinates based on Dirichlet Tessellations,' in Farin, G., Hagan, H. and Noltemeier, H. (eds.), Geometric Modelling, Vol. 8, pp.227-239
  19. Sambridge, M, Braun, J. and McQueen, H, 1995, 'Geophysical Parameterization and Interpolant of Irregular Data Using Natural Neighbors,' Geophysical Journal International, Vol. 122, pp. 837-857 https://doi.org/10.1111/j.1365-246X.1995.tb06841.x
  20. Sibson, R., 1980, 'A Vector Identity for Dirichlet Tessellation,' Mathematical Proc. the Cambridge Philosophical Society, Vol. 80, pp. 151-155
  21. Strang, G. and Fix, G. J., 1973, An Analysis of the Finite Element Method, Prentice-Hall, New Jersey
  22. Sukumar, N. and Moran, A. and Belytschko, T., 1998, 'The Natural Element Method in Solid Mechanics,' Int. J. Numer. Methods Engng., Vol. 43, pp.839-887 https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R
  23. Timoshenko, S. P. and Goodier, J. N., 1970, Theory of Elasticity, McGraw-Hill, New York
  24. Traversoni, L., 1994, 'Natural Neighbor Finite Elements,' Proc. Int. Conf. Hydraulic Engineering Software, Vol. 2, pp.291-297 https://doi.org/10.2495/HY940352
  25. Zhu, T. and Atluri, S. N., 1998, 'A Modified Collocation Method and a Penalty Formulation for Enforcing the Essential Boundary Conditions in the Element Free Galerkin Method,' Computational Mechanics, Vol. 21, pp. 211-222 https://doi.org/10.1007/s004660050296
  26. Zienkiewicz, O. C. and Taylor, R. L., 1989, The Finite Element Method: Basic Formulation and Linear Problems, McGraw-Hill, Singapore