DOI QR코드

DOI QR Code

나노허니컴 구조물의 인장 및 굽힘 물성 측정

Measurement of Tensile and Bending Properties of Nanohoneycomb Structures

  • 전지훈 (포항공과대학교 기계공학과) ;
  • 최덕현 (포항공과대학교 기계공학과) ;
  • 이평수 (포항공과대학교 화학공학과) ;
  • 이건홍 (포항공과대학교 화학공학과) ;
  • 박현철 (포항공과대학교 기계공학과) ;
  • 황운봉 (포항공과대학교 기계공학과)
  • 발행 : 2006.12.31

초록

나노허니컴 구조물의 영률, 굽힘 탄성 계수. 공칭파괴강도를 구하였다. 양극산화 알루미늄은 잘 정렬된 나노허니컴 구조물의 일종으로서 공정이 간단하고, 높은 종횡비, 자가 정렬된 기공구조를 가지고 있고, 기공의 크기를 조절할 수 있다. 원자현미경으로 외팔보 굽힘 시험을 수행하였고 나노-UTM을 이용한 3점 굽힘 실험결과와 비교하였다. 또한 나노-UTM으로 인장시험을 수행하였다. 나노허니컴 구조물의 한쪽 면은 막혀 있어서, 일반적인 샌드위치 구조물의 면재에 비유될 수 있다. 하지만 이러한 막힌 면은 굽힘 강도 증가에 영향을 끼치지 못하고 균열선단으로 작용한다는 것을 알 수 있었다. 본 연구로 나노허니컴 구조물을 설계하는데 기초적인 물성을 제공하고자 한다.

We measured mechanical properties, including Young's modulus, effective bending modulus and nominal fracture strength of nanohoneycomb structures using an Atomic Force Microscope(AFM) and a Nano-Universal Testing Machine(UTM). Anodic aluminum oxide(AAO) films are well suited as nanohoneycomb structures because of the simple fabrication process, high aspect ratio, self-ordered hexagonal pore structure, and simple control of pore dimensions. Bending tests were carried out for cantilever structures by pressing AFM tips, and the results were compared with three-point bending tests and tensile tests using a Nano-UTM. One side of the AAO films is clogged by harrier layers, and looks like a face material of conventional sandwich structures. Analysis of this layer showed that it did not influence the bending rigidity, and was just a crack tip. The present results can act as a design guideline in applications of nanohoneycomb structures.

키워드

참고문헌

  1. Hynes AM et aI., 'Recent advances in silicon etching for MEMS using the ASE process,' Sensor Actuat. A-Phys., Vol. 74, No. 13, 1999, pp. 13-17 https://doi.org/10.1016/S0924-4247(98)00326-4
  2. Gad-el-Hak Mohamed et al., 'The MEMS handbook,' Chap. 17, CRC Press, 2002
  3. Masuda H. et al., 'Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,' Science, Vol. 268, 1995, pp. 1466-1468 https://doi.org/10.1126/science.268.5216.1466
  4. Nielsch K et al., 'Hexagonally ordered 100 nm period nickel nanowire arrays,' Appl. Phys. Lett., Vol. 79, 2001, pp. 1360-1362 https://doi.org/10.1063/1.1399006
  5. Karmhag R et al., 'Oxidation kinetics of nickel particles: comparison between free particles and particles in an oxide matrix,' Solar Energy, Vol. 68, 2000, pp. 329-333 https://doi.org/10.1016/S0038-092X(00)00025-6
  6. Che G et aI., 'Carbon nanotube membranes for electrochemical energy storage and production,' Nature, Vol. 393, 1998, pp, 346-349 https://doi.org/10.1038/30694
  7. Che G et al., 'Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method,' Chem. Mater., Vol. 10, 1998, pp. 260-267 https://doi.org/10.1021/cm970412f
  8. Zhang ZB et al., 'Processing and characterization of single-crystalline ultrafine bismuth nanowires,' Chem. Mater., Vol. 11, 1999, pp. 1659-1665 https://doi.org/10.1021/cm9811545
  9. Sauer G et al., 'Highly ordered monocrystalline silver nanowire arrays,' J. Appl. Phys., Vol. 91, 2002, pp. 3243-3247 https://doi.org/10.1063/1.1435830
  10. Jee SE et al., 'Fabrication of microstructures by wet etching of anodic aluminum oxide substrates,' Chem. Mater., Vol. 17, 2005, pp. 4049-4052 https://doi.org/10.1021/cm0486565
  11. MTS Nano Instruments Innovation Center, 'Nano bionix/ UTM universal testing system User Manual,' MTS, 2005
  12. Hur YH et al., 'Measurement of mechanical properties for micro-scaled specimen,' Workshop on the Mechanical properties of Nano-Structured Materials, KRISS, 2003
  13. Tan EPS et al., 'Tensile testing of a single ultra fine polymeric fiber,' Biomaterial, Vol. 26, 2005, pp. 1453-1456 https://doi.org/10.1016/j.biomaterials.2004.05.021
  14. Dorre E et al., 'Alumina,' Springer-Verlag, 1984
  15. Xia Z et al., 'Mechanical properties of highly ordered nanoporous anodic alumina membranes,' Rev. Adv. Mater. Sci., Vol. 6, 2004, pp. 131-139
  16. Jessensky O et al., 'Self-organized formation of hexagonal pore arrays in anodic alumina,' App. Phys. Let., Vol. 72, No. 10, 1998, pp. 1173-1175 https://doi.org/10.1063/1.121004