DOI QR코드

DOI QR Code

Measurement of Tensile and Bending Properties of Nanohoneycomb Structures

나노허니컴 구조물의 인장 및 굽힘 물성 측정

  • 전지훈 (포항공과대학교 기계공학과) ;
  • 최덕현 (포항공과대학교 기계공학과) ;
  • 이평수 (포항공과대학교 화학공학과) ;
  • 이건홍 (포항공과대학교 화학공학과) ;
  • 박현철 (포항공과대학교 기계공학과) ;
  • 황운봉 (포항공과대학교 기계공학과)
  • Published : 2006.12.31

Abstract

We measured mechanical properties, including Young's modulus, effective bending modulus and nominal fracture strength of nanohoneycomb structures using an Atomic Force Microscope(AFM) and a Nano-Universal Testing Machine(UTM). Anodic aluminum oxide(AAO) films are well suited as nanohoneycomb structures because of the simple fabrication process, high aspect ratio, self-ordered hexagonal pore structure, and simple control of pore dimensions. Bending tests were carried out for cantilever structures by pressing AFM tips, and the results were compared with three-point bending tests and tensile tests using a Nano-UTM. One side of the AAO films is clogged by harrier layers, and looks like a face material of conventional sandwich structures. Analysis of this layer showed that it did not influence the bending rigidity, and was just a crack tip. The present results can act as a design guideline in applications of nanohoneycomb structures.

나노허니컴 구조물의 영률, 굽힘 탄성 계수. 공칭파괴강도를 구하였다. 양극산화 알루미늄은 잘 정렬된 나노허니컴 구조물의 일종으로서 공정이 간단하고, 높은 종횡비, 자가 정렬된 기공구조를 가지고 있고, 기공의 크기를 조절할 수 있다. 원자현미경으로 외팔보 굽힘 시험을 수행하였고 나노-UTM을 이용한 3점 굽힘 실험결과와 비교하였다. 또한 나노-UTM으로 인장시험을 수행하였다. 나노허니컴 구조물의 한쪽 면은 막혀 있어서, 일반적인 샌드위치 구조물의 면재에 비유될 수 있다. 하지만 이러한 막힌 면은 굽힘 강도 증가에 영향을 끼치지 못하고 균열선단으로 작용한다는 것을 알 수 있었다. 본 연구로 나노허니컴 구조물을 설계하는데 기초적인 물성을 제공하고자 한다.

Keywords

References

  1. Hynes AM et aI., 'Recent advances in silicon etching for MEMS using the ASE process,' Sensor Actuat. A-Phys., Vol. 74, No. 13, 1999, pp. 13-17 https://doi.org/10.1016/S0924-4247(98)00326-4
  2. Gad-el-Hak Mohamed et al., 'The MEMS handbook,' Chap. 17, CRC Press, 2002
  3. Masuda H. et al., 'Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,' Science, Vol. 268, 1995, pp. 1466-1468 https://doi.org/10.1126/science.268.5216.1466
  4. Nielsch K et al., 'Hexagonally ordered 100 nm period nickel nanowire arrays,' Appl. Phys. Lett., Vol. 79, 2001, pp. 1360-1362 https://doi.org/10.1063/1.1399006
  5. Karmhag R et al., 'Oxidation kinetics of nickel particles: comparison between free particles and particles in an oxide matrix,' Solar Energy, Vol. 68, 2000, pp. 329-333 https://doi.org/10.1016/S0038-092X(00)00025-6
  6. Che G et aI., 'Carbon nanotube membranes for electrochemical energy storage and production,' Nature, Vol. 393, 1998, pp, 346-349 https://doi.org/10.1038/30694
  7. Che G et al., 'Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method,' Chem. Mater., Vol. 10, 1998, pp. 260-267 https://doi.org/10.1021/cm970412f
  8. Zhang ZB et al., 'Processing and characterization of single-crystalline ultrafine bismuth nanowires,' Chem. Mater., Vol. 11, 1999, pp. 1659-1665 https://doi.org/10.1021/cm9811545
  9. Sauer G et al., 'Highly ordered monocrystalline silver nanowire arrays,' J. Appl. Phys., Vol. 91, 2002, pp. 3243-3247 https://doi.org/10.1063/1.1435830
  10. Jee SE et al., 'Fabrication of microstructures by wet etching of anodic aluminum oxide substrates,' Chem. Mater., Vol. 17, 2005, pp. 4049-4052 https://doi.org/10.1021/cm0486565
  11. MTS Nano Instruments Innovation Center, 'Nano bionix/ UTM universal testing system User Manual,' MTS, 2005
  12. Hur YH et al., 'Measurement of mechanical properties for micro-scaled specimen,' Workshop on the Mechanical properties of Nano-Structured Materials, KRISS, 2003
  13. Tan EPS et al., 'Tensile testing of a single ultra fine polymeric fiber,' Biomaterial, Vol. 26, 2005, pp. 1453-1456 https://doi.org/10.1016/j.biomaterials.2004.05.021
  14. Dorre E et al., 'Alumina,' Springer-Verlag, 1984
  15. Xia Z et al., 'Mechanical properties of highly ordered nanoporous anodic alumina membranes,' Rev. Adv. Mater. Sci., Vol. 6, 2004, pp. 131-139
  16. Jessensky O et al., 'Self-organized formation of hexagonal pore arrays in anodic alumina,' App. Phys. Let., Vol. 72, No. 10, 1998, pp. 1173-1175 https://doi.org/10.1063/1.121004