Structural Analysis of Liquid Rocket Thrust Chamber Regenerative Cooling Channel using Bodner-Partom Viscoplastic Model

Bodner-Partom 점소성 모델을 이용한 액체로켓 연소기 재생냉각 채널 구조해석

  • 류철성 (한국항공우주연구원 연소기팀) ;
  • 백운봉 (한국표준과학연구원) ;
  • 최환석 (한국항공우주연구원 연소기팀)
  • Published : 2006.12.30

Abstract

Elastic-viscoplastic structural analysis has been performed for regenerative cooling chamber of liquid rocket thrust chamber using Bodner-Partom visco-plastic model. Strain rate test was conducted for a copper alloy at various temperatures in order to get material constants of visco-plastic model used in the structural analysis. Material constants of visco-plastic model were obtained from strain rate test results and visco-plastic model was incorporated into finite element program, Marc, by means of a user subroutine. The structural analysis results indicated that the deformation of cooling channel is mostly caused by thermal loading rather than pressure loading and confirmed structural stability of the cooling channel under the operating condition.

Bodner-Partom 점소성 모델을 이용하여 액체로켓 연소기 재생냉각 챔버의 구조해석을 수행하였다. 구조해석에 사용한 점소성 모델의 재료상수를 구하기 위하여 구리합금에 대하여 변형률 속도를 변화시켜 인장시험을 상온 및 고온에서 수행하였다. 점소성 모델은 상용유한요소 해석 프로그램인 Marc의 사용자 서브루틴을 이용하여 구현하였다. 구조해석 결과 냉각 채널은 압력에 의한 하중보다 열하중에 의하여 대부분의 변형이 발생하며 연소기의 작동조건에서 냉각 채널의 구조적인 안정성 여부를 확인할 수 있었다.

Keywords

References

  1. V. K. Arya, "Nonlinear Structural Analysis of Cylindrical Thrust Chambers Using Viscoplastic Models," NASA CR-185253, January 1991
  2. V. K. Arya, "Viscoplastic Analysis of an Experimental Cylinderical Thrust Chamber Liner," NASA TM-103287, June 1991
  3. C. P. Providakis, "D/BEM Implementation of Robinson's Viscoplastic Model in Creep Analysis of Metals Using a Complex Variable Numerical Technique," Advances in Engineering Software, Vol. 33, 2002, pp.805-816 https://doi.org/10.1016/S0965-9978(02)00041-8
  4. 류철성, 정용현, 최환석, 이동주, "액체로켓 연소기 재생냉각 채널 상온 구조해석," 한국추진공학회지, 제9권 4호, 2005, pp.39-47
  5. 류철성, 최환석, 이동주, "액체로켓 연소기 재생냉각 챔버 구조설계," 한국항공우주학회지, 제33권 12호, 2005, pp.109-116 https://doi.org/10.5139/JKSAS.2005.33.12.109
  6. T. Y. Chang and R. L. Thompson, "A Computer Program for Predicting Nonlinear Uniaxial Material Response Using Viscoplastic Models," NASA TM-83675, July 1984
  7. K. S. Chan and U. S. Lindholm, "Inelastic Deformation Under Nonisothermal Loading," Journal of Engineering Materials and Technology Vol. 112, 1990, pp.15-25 https://doi.org/10.1115/1.2903180
  8. G. E. Dieter, "Mechanical Metallurgy," chap. 5, McGraw-Hill Inc., 1986
  9. S. R. Bodner, "Unified plasticity for engineering application," Kluwer Academic/Plenum Publishers, Mathematical concepts and methods in science and engineering series
  10. A. M. Merzer, "Steady and Trainsient Creep Behavior Based on Unified Constitutive Equations," ASME Journal of Engineering Materials and Technology, Vol. 104, 1982, pp.18-25 https://doi.org/10.1115/1.3225029
  11. U. S. Lindholm et al., "Constitutive Modeling for Isotropic Materials(HOST)," Second Annual Status Report, NASA CR-174980, 1985
  12. K. S. Chan et al., "Constitutive Modeling for Isotropic Materials(HOST)," Third Annual Status Report, NASA CR-179522, 1986
  13. W. H. Armstrong and E. W. Erogren, "3-D Thrust Chamber Life Prediction," NASA CR-134979, March 1976