Optimization of Medium Components for Cell Mass Production of Saccharomyces cerevisiae JUL3 using Response Surface Methodology

반응표면분석법을 이용하여 Sacharomyces cerevisaeJUL3의 균체량 생산을 위한 배지조성 최적화

  • Kim, Young-Hwan (Department of Chemical and Biological Engineering, Korea University) ;
  • Kang, Seong-Woo (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Jong-Ho (Department of Chemical and Biological Engineering, Korea University) ;
  • Chang, Hyo-Ihl (School of Life Sciences and Biotechnology, Korea University) ;
  • Yun, Cheol-Won (School of Life Sciences and Biotechnology, Korea University) ;
  • Paik, Hyun-Dong (Division of Animal Life Science, Konkuk University) ;
  • Kang, Chang-Won (Division of Animal Life Science, Konkuk University) ;
  • Kim, Seung-Wook (Department of Chemical and Biological Engineering, Korea University)
  • 김영환 (고려대학교 화공생명공학과) ;
  • 강성우 (고려대학교 화공생명공학과) ;
  • 이종호 (고려대학교 화공생명공학과) ;
  • 장효일 (고려대학교 생명공학원) ;
  • 윤철원 (고려대학교 생명공학원) ;
  • 백현동 (건국대학교 동물자원학과) ;
  • 강창원 (건국대학교 동물자원학과) ;
  • 김승욱 (고려대학교 화공생명공학과)
  • Published : 2006.12.30

Abstract

[ ${\beta}-Glucan$ ], one of the cell wall components, is most plentiful polysaccharides in cell wall and has several advantages in immune system. In yeast ${\beta}-glucan$ is mainly contained in the yeast cell wall, and thus it is important to produce high levels of cell mass for the mass production of yeast ${\beta}-glucan$. The best carbon and nitrogen sources on cell mass production were high fructose syrup and yeast extract. Response surface methodology (RSM) was very potential tool for the optimization of process factor and medium component. It was applied to estimate the effects of medium components on the production of cell mass. Optimal concentrations of high fructose syrup and yeast extract by response surface methodology were 8.0% (v/v) and 5.2% (w/v), respectively and the cell mass predicted was $17.0\;g/{\ell}$ at 20 h of cultivation.

본 연구는 효모의 세포벽에 존재하는 본 연구는 효모의 세포벽에 존재하는 ${\beta}-Glucan$을 대량생산하기 위해 Saccharomyces cerevisiae JUL3의 균체량을 증가시키기 위한 연구를 수행하였다. S. cerevisiae JUL3의 배양학적 특성을 알아보기 위해 kinetic parameter를 조사하였을 때 specific growth rate (${\mu}$)는 $0.145\;h^{-1}$, yield ($Y_{x/s}$)는 0.332 g/g, glucose 소모속도($q_{s}$)는 $0.437\;h^{-1}$이며 productivity (P)는 $0.4827\;g/{\ell}{\cdot}h$을 나타내었다. 균체량이 가장 높게 나타난 탄소원과 질소원은 고과당 (high fructose syrup)과 yeast extract이었다. 효모균체 대량생산 및 scale up을 위하여 반응표면 분석법을 통하여 고과당과 yeast extract에 대한 최적농도를 조사하였다. 균체량이 가장 많이 생산되어질 수 있는 조건으로 제시된 고과당과 yeast extract의 최적 농도는 각각 8.0 %와 5.2 %였으며, 이 때 예측되는 균체량은 $16.95\;g/{\ell}$ 이었다.

Keywords

References

  1. Naohito, O., U. Michkharu, T. Aiko, T. Kazuhiro, N. M. Noriko, A. Yoshiyuki, W. A. Maki, T. Hiroshi, T. Shigenori, and Y. Toshiro (1999), Solubilizatioin of yeast cell-wall $\beta-(1{\rightarrow3})$-D-glucan by sodium hypochlorite and dimethyl sulfoxide extraction, Carbohydr. Res. 316, 161-172 https://doi.org/10.1016/S0008-6215(99)00049-X
  2. Navarini, L., J. Bella, A. Raibani, R GiIIi, and V. Rizza (1996), Structural characterization and solution properties of and acidic branched $\beta-(1\rightarrow3)$-D-glucan from Aureobasidium pullans, Bio.Macromol. 19, 157-163 https://doi.org/10.1016/0141-8130(96)01121-X
  3. Sandula, J., G. Kogan, M. Kacurakova, and E. Machova (1999), $(1\rightarrow3)-\beta$-D-glucans, their preparation, physico-chemical characterization and immunomodulatory activity, Carbohydr. Polymers 38, 247-253 https://doi.org/10.1016/S0144-8617(98)00099-X
  4. Bobek, P. and S. Galbavy (2001), Effect of Pleuran (beta-glucan from Pleurotus ostreatus) on the antioxidant status of the organism and on dimethylhydrazine-induced precancerous lesions in rat colon, Br. J. Biomed Sci. 58(3), 164-168
  5. Delatte, S. J., J. Evans, A. Hebra, W. Adamson, H. B. Othersen, and E. P. Tagge (2001), Effectiveness of beta-glucan collagen for treatment of partical-thickness burns in children, J. Pediatr, Surg. 36(1), 113-118 https://doi.org/10.1053/jpsu.2001.20024
  6. Hetland, G., N. Ohno, I. S. Aaberge, and M. Lovik (2000), Protective effect of $\beta$-glucan against systmic Streptococcus pneumoniae infection in mice, FEMS Immunol. Med. Microbiol. 27(2), 11-116
  7. Nicolosi, R, S. J. Bell, B. R Bistrian, I. Greenberg, R. A. Forse, and G. L. Blackburn (1999), Plasma lipid changes after supplementation with beta-glucan fiber from yeast, Am. J. Clin. Nutr. 70(2), 208-212 https://doi.org/10.1093/ajcn.70.2.208
  8. Tokunaka, K., N. Ohno, Y. Adachi, N. Miura, and T. Yadomae (2002), Application of Cadida solubilized cell wall $\beta$-glucan in antitumor immunotherapy against P815 mastocytoma in mice, Int. J. Immunopharmacol. 2(1), 59-67 https://doi.org/10.1016/S1567-5769(01)00148-5
  9. Adachi, T., N. Ohno, M. Ohsawa, S. Okinawa, and T. Yacomae (1990), Machrophage activation in vitro by chemically cross-linked $\beta-(1\rightarrow3)-$glucan, Chem. Pharm. Bull. 38, 988-992 https://doi.org/10.1248/cpb.38.988
  10. Kim, K. S., C. E. Chang, and H. S. Yun (2004), Effect of GIucanex 200G on Yeast Cell Wall, Korean. J. Biotechnol. Bioeng. 19(4), 288-290
  11. Ukawa, Y., H. Ito, and M. Hisamatsu (2000), Antitumor effects of $\beta-(1\rightarrow3)$-D-glucan and $\beta-(1\rightarrow6)$-D-glucan purified from newly cultivated mushroom, Hatakeshimeji (Lyophyllum decastes Sing.), J. Biosci. Bioeng. 90, 98-104 https://doi.org/10.1016/S1389-1723(00)80041-9
  12. Lim J. S., M. C. Park, J. H. Lee, S. W. Park, and S. W. Kim (2005), Optimization of culture medium and conditions for Neo-fructooligosaccharides production by Penicillium citrinum, Eur. Food. Res. Technol. 221, 639-644 https://doi.org/10.1007/s00217-005-0070-6
  13. Calado C. R. C., C. Almeida, J. M. S. Cabral, and L. P. Fonseca (2003), Development of a Fed-Batch Cultivation Strategy for the Enhanced Production and Secretion of Cutinase by a Recombinant Saccharomyces cerevisiae SU50 Strain, J. Biosci. Bioeng. 96, 141-148 https://doi.org/10.1016/S1389-1723(03)90116-2