Culture Condition of Pseudomonas aeruginosa F722 for Biosurfactant Production

  • Oh, Kyung-Taek (Department of Environmental Engineering, Chonnam National University) ;
  • Kang, Chang-Min (Department of Environmental Engineering, Chodang University) ;
  • Kubo, Motoki (Department of Bio Science and Technology, Faculty of Science and Engineering, Ritsumeikan University) ;
  • Chung, Seon-Yong (Department of Environmental Engineering, Chonnam National University)
  • 발행 : 2006.12.31

초록

Pseudomonas aeruginosa F722 produces a biosurfactant (BS) during its degradation of carbon and hydrocarbon compounds. The culture conditions for upgrading the biosurfactant productivity were investigated. The concentration of the biosurfactant produced by P. aeruginosa F722 was 0.78 g/L in C-medium; however, this increased to 1.66 g/L in BS medium, which was experimentally adjusted to optimal conditions. $NaNO_{2}$ was found to be most effective for microbial growth, with an $O.D_{600nm}$ of 1.18 for 0.1 % $NaNO_{2}$. Microbial growths, according to the $O.D_{600nm}$ were 2.53, 2.68, 2.89, and 2.87 for glucose, glycerol, $n-C_{10},\;and\;n-C_{22}$, respectively. Clear zone diameters (cm), indicating biosurfactant activity, were 9.0, 8.8, 5.7, and 8.5 for glucose, glycerol, $n-C_{10},\;and\;n-C_{22}$, respectively. Microbial growth was not consistent with the biosurfactant activity. The best biosurfactant activity was found with a C/N ratio of 20. Under optimal culture condition, the average surface tension decreased from 70 to 30 mN/m after 5 days. With aeration of 1.0 vvm, the biosurfactant produced increased to 1.94 g/L (up to 20%) compared to that of 1.66 g/L with no aeration. With aeration, the velocities of glucose degradation during both the log and stationary growth phases increased from 0.25 and $0.18\;h^{-1}$ to 0.33 and $0.29\;h^{-1}$, respectively, and the time for the culture to arrive at the maximum clear zone diameter became shorter, from 80 down to 60 h with no aeration.

키워드

참고문헌

  1. Desai, J. D. and I. M. Banat (1997) Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 61: 47-64
  2. Garti, N. (1998) What can nature offer from an emulsifier point of view: trends and progress? Colloids Surf. A Physicochem. Eng. Asp. 152: 125-146 https://doi.org/10.1016/S0927-7757(98)00621-9
  3. Suk, W. S., E. G. Lim, H. J. Son, G. Lee, and S. J. Lee (1999) Compositional analysis and some properities of biosurfactant from Pseudomonas sp. SWI. Kor. J. Appl. Microbiol. Biotechnol. 27: 41-45
  4. Van Hamme, J. D. and O. P. Ward (2001) Physical and metabolic interactions of Pseudomonas sp. strain JA5-B45 and Rhodococcus sp. strain F9-D79 during growth on crude oil and effect of a chemical surfactant on them. Appl. Environ. Microbiol. 67: 4874-4879 https://doi.org/10.1128/AEM.67.10.4874-4879.2001
  5. Benincasa, M., J. Contiero, M. A. Manresa, and I. O. Moraes (2002) Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. J. Food Eng. 54: 283-288 https://doi.org/10.1016/S0260-8774(01)00214-X
  6. Bognolo, G. (1999) Biosurfactants as emulsifying agents for hydrocarbons. Colloids Surf. A Physicochem. Eng. Asp. 152: 41-52 https://doi.org/10.1016/S0927-7757(98)00684-0
  7. Gu, M. B. and S. T. Chang (2001) Soil biosensor for the detection of PAH toxicity using an immobilized recombinant bacterium and a biosurfactant. Biosens. Bioelectron. 16: 667-674 https://doi.org/10.1016/S0956-5663(01)00230-5
  8. Mulligan, C. N., R. N. Yong, and B. F. Gibbs (2001) Heavy metal removal from sediments by biosurfactants. J. Hazard. Mater. 85: 111-125 https://doi.org/10.1016/S0304-3894(01)00224-2
  9. Providenti, M. A., C. A. Flemming, H. Lee, and J. T. Trevors (1995) Effect of addition of rhamnolipid biosurfactants or rhamnolipid-prducing Pseudomonas aeruginosa on phenanthrene mineralization in soil slurries. FEMS Microbiol. Ecol. 17: 15-26 https://doi.org/10.1111/j.1574-6941.1995.tb00123.x
  10. Nakamura, Y., M. Daidai, and F. Kobayashi (2004) Bioremediation of phenolic compounds having endocrinedisrupting activity using ozone oxidation and activated sludge treatment. Biotechnol. Bioprocess Eng. 9: 151-155 https://doi.org/10.1007/BF02942285
  11. Rahman, K. S. M., I. M. Banat, J. Thahira, T. Thayumanavan, and P. Lakshmanaperumalsamy (2002) Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresour. Technol. 81: 25-32 https://doi.org/10.1016/S0960-8524(01)00105-5
  12. Swannell, R. P. J., K. Lee, and M. McDonagh (1996) Field evaluations of marine oil spill bioremediation. Microbiol. Rev. 60: 342-365
  13. Kim, P. and J. H. Kim (2005) Characterization of a novel lipopolysaccharide biosurfactant from Klebsiella oxitoca. Biotechnol. Bioprocess Eng. 10: 494-499 https://doi.org/10.1007/BF02932283
  14. Stelmack, P. L., M. R. Gray, and M. A. Pickard (1999) Bacterial adhesion to soil contaminants in the presence of surfactants. Appl. Environ. Microbiol. 65: 163-168
  15. Leon, V. and M. Kumar (2005) Biological upgrading of heavy crude oil. Biotechnol. Bioprocess Eng. 10: 471-481 https://doi.org/10.1007/BF02932281
  16. Angelova, B. and H. P. Schmauder (1999) Lipophilic compounds in biotechnology-interactions with cells and technological problems. J. Biotechnol. 67: 13-32 https://doi.org/10.1016/S0168-1656(98)00139-4
  17. Atlas, R. M. and C. E. Cerniglia (1995) Bioremediation of petroleum pollutants diversity and environmental aspects of hydrocarbon biodegradation. Bioscience 45: 332-338 https://doi.org/10.2307/1312494
  18. Noordman, W. H., J. H. J. Wachter, G. J. de Boer, and D. B. Janssen (2002) The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability. J. Biotechnol. 94: 195-212 https://doi.org/10.1016/S0168-1656(01)00405-9
  19. Oh, K. T., Y. W. Lee, M. Kubo, S. J. Kim, and S. Y. Chung (2000) Isolation, identification and characterization of bacteria degrading crude oil. J. Kor. Soc. Environ. Eng. 22: 1851-1859
  20. Oh, K. T., G. H. Park, J. I. Lee, J. K. Lee, S. J. Kim, M. Kubo, and S. Y. Chung (2002) Biodegradation of crude oil and petroleum products by crude oil-degrading microorganism. Kor. J. Biotechnol. Bioeng. 17: 247-254
  21. Demain, A. L. and J. E. Davies (1999) Manual of Industrial Microbiology and Biotechnology. 2nd ed., pp. 629- 714. ASM Press, Washington, DC, USA
  22. Healy, M. G., C. M. Devine, and R. Murphy (1996) Microbial production of biosurfactants. Resour. Conserv. Recycl. 18: 41-57 https://doi.org/10.1016/S0921-3449(96)01167-6
  23. Holden, P. A., M. G. LaMontagne, A. K. Bruce, W. G. Miller, and S. E. Lindow (2002) Assessing the role of Pseudomonas aeruginosa surface-active gene expression in hexadecane biodegradation in sand. Appl. Environ. Microbiol. 68: 2509-2518 https://doi.org/10.1128/AEM.68.5.2509-2518.2002
  24. Lang, S. and D. Wullbrandt (1999) Rhamnose lipids-- biosynthesis, microbial production and application potential. Appl. Microbiol. Biotechnol. 51: 22-32 https://doi.org/10.1007/s002530051358
  25. Oerther, D. B., J. Pernthaler, A. Schramm, R. Amann, and L. Raskin (2000) Monitoring precursor 16S rRNAs of Acinetobacter spp. in activated sludge wastewater treatment systems. Appl. Environ. Microbiol. 66: 2154-2165 https://doi.org/10.1128/AEM.66.5.2154-2165.2000
  26. Guerra-Santos, L., O. Kappeli, and A. Fiechter (1984) Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl. Environ.Microbiol. 48: 301-305
  27. Matsufujifu, M., K. Nakata, and A. Yoshimoto (1997) High production of rhamnolipids by Pseudomonas aeruginosa growing on ethanol. Biotechnol. Lett. 19: 1213-1215 https://doi.org/10.1023/A:1018489905076
  28. Kuyukina, M. S., I. B. Ivshina, J. C. Philp, N. Christofi, S. A. Dunbar, and M. I. Ritchkova (2001) Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. J. Microbiol. Methods 46: 149-156 https://doi.org/10.1016/S0167-7012(01)00259-7
  29. Morikawa, M., H. Daido, T. Takao, S. Murata, Y. Shimonishi, and T. Imanaka (1993) A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. J. Bacteriol. 175: 6459-6466
  30. Kim, S. H., E. J. Lim, K. S. Choi, Y. K. Jeong, K. L. Jang, and T. H. Lee (1996) Emulsifying agent production by Acinetobacter sp. BE-254. Kor. J. Appl. Micorbiol. Biotechnol. 24: 206-212