Fabrication of Disposable Protein Chip for Simultaneous Sample Detection

  • Lee, Chang-Soo (Department of Chemical and Biological Engineering, Chungnam National University) ;
  • Lee, Sang-Ho (School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Kim, Yun-Gon (School of Chemical and Biological Engineering and Institute of Molecular Biology and Genetics, Seoul National University) ;
  • Oh, Min-Kyu (Department of Chemical and Biological Engineering, Korea University) ;
  • Hwang, Taek-Sung (Department of Chemical and Biological Engineering, Chungnam National University) ;
  • Rhee, Young-Woo (Department of Chemical and Biological Engineering, Chungnam National University) ;
  • Song, Hwan-Moon (Department of Chemical and Biological Engineering, Chungnam National University) ;
  • Kim, Bo-Yeol (Department of Chemical and Biological Engineering, Chungnam National University) ;
  • Kim, Yong-Kweon (School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Kim, Byung-Gee (School of Chemical and Biological Engineering and Institute of Molecular Biology and Genetics, Seoul National University)
  • Published : 2006.10.30

Abstract

In this study, we have described a method for the fabrication of a protein chip on silicon substrate using hydrophobic thin film and microfluidic channels, for the simultaneous detection of multiple targets in samples. The use of hydrophobic thin film provides for a physical, chemical, and biological barrier for protein patterning. The microfluidic channels create four protein patterned strips on the silicon surfaces with a high signal-to-noise ratio. The feasibility of the protein chips was determined in order to discriminate between each protein interaction in a mixture sample that included biotin, ovalbumin, hepatitis B antigen, and hepatitis C antigen. In the fabrication of the multiplexed assay system, the utilization of the hydrophobic thin film and the microfluidic networks constitutes a more convenient method for the development of biosensors or biochips. This technique may be applicable to the simultaneous evaluation of multiple protein-protein interactions.

Keywords

References

  1. Borrebaeck, C. A. (2006) Antibody microarray-based on-coproteomics. Expert Opin. Biol. Ther. 6: 833-838 https://doi.org/10.1517/14712598.6.8.833
  2. Bulyk, M. L. (2006) DNA microarray technologies for measuring protein-DNA interactions. Curr. Opin. Biotechnol. 17: 422-430 https://doi.org/10.1016/j.copbio.2006.06.015
  3. Kim, C. G., J. J. Lee, D. Y. Jung, J. Jeon, H. S. Heo, H. C. Kang, J. H. Shin, Y. S. Cho, K. J. Cha, C. G. Kim, B. R. Do, K. S. Kim, and H. S. Kim (2006) Profiling of differentially expressed genes in human stem cells by cDNA microarray. Mol. Cells 21: 343-355
  4. Sato, K., A. Egami, T. Odake, M. Tokeshi, M. Aihara, and T. Kitamori (2006) Monitoring of intercellular messengers released from neuron networks cultured in a microchip. J. Chromatogr. A 1111: 228-232 https://doi.org/10.1016/j.chroma.2005.06.099
  5. Lee, C. S., S. H. Lee, S. S. Park, Y. K. Kim, and B. G. Kim (2003) Protein patterning on silicon-based surface using background hydrophobic thin film. Biosens. Bioelectron. 18: 437-444 https://doi.org/10.1016/S0956-5663(02)00147-1
  6. Lee, C. S., S. H. Lee, Y. G. Kim, J. H. Lee, Y. K. Kim, and B. G. Kim (2006) A method of binding kinetics of a ligand to micropatterned proteins on a microfluidic chip. Biosens. Bioelectron. In press
  7. Lee, S. H., C. S. Lee, D. S. Shin, B. G. Kim, Y. S. Lee, and Y. K. Kim (2004) Micro protein patterning using a lift-off process with fluorocarbon thin film. Sens. Actuators B Chem. 99: 623-632 https://doi.org/10.1016/j.snb.2003.11.040
  8. Bentzen, E. L., I. D. Tomlinson, f. Mason, P. Gresch, M. R. Warnement, D. Wright, E. Sanders-Bush, R. Blakely, and S. J. Rosenthal (2005) Surface modification to reduce nonspecific binding of quantum dots in live cell assays. Bioconjug. Chem. 16: 1488-1494 https://doi.org/10.1021/bc0502006
  9. Cha, T., A. Guo, Y. Jun, D. Pei, and X. Y Zhu (2004) Immobilization of oriented protein molecules on poly (ethylene glycol)-coated Si(l11). Proteomics 4: 1965-1976 https://doi.org/10.1002/pmic.200300747
  10. Preininger, C., U. Sauer, W. Kern, and J. Dayteg (2004) Photoactivatable copolymers of vinylbenzyl thiocyanate as immobilization matrix for biochips. Anal. Chem. 76: 6130-6136 https://doi.org/10.1021/ac0499468
  11. Schmalenberg, K. E., H. M. Buettner, and K. E. Uhrich (2004) Microcontact printing of proteins on oxygen plasma-activated poly (methyl methacrylate). Biomaterials 25: 1851-1857 https://doi.org/10.1016/j.biomaterials.2003.08.048
  12. Wilkop, T., Z. Wang, and Q. Cheng (2004) Analysis of micro-contact printed protein patterns by SPR imaging with a LED light source. Langmuir 20: 11141-11148 https://doi.org/10.1021/la048177k
  13. Lee, C. S. and B. G. Kim (2002) Improvement of protein stability in protein microarrays. Biotechnol. Lett. 24: 839-844 https://doi.org/10.1023/A:1015554705979
  14. Lee, C. S., S. H. Lee, Y. G. Kim., C. H. Choi., Y. K. Kim, and B. G. Kim (2006) Biochemical reactions on a microfluidic chip based on a precise fluidic handling method at the nanoliter scale. Biotechnol. Bioprocess Eng. 11: 146-153 https://doi.org/10.1007/BF02931899
  15. Park, S. S., H. S. Joo, S. I. Cho, M. S. Kim, Y. K. Kim, and B. G. Kim (2003) Multi-step reactions on microchip platform using nitrocellulose membrane reactor. Biotechnol. Bioprocess Eng. 8: 257-262 https://doi.org/10.1007/BF02942275
  16. Hui, A. Y., G. Wang, B. Lin, and W. T. Chan (2005) Microwave plasma treatment of polymer surface for irreversible sealing of microfluidic devices. Lab Chip 5: 1173-1177 https://doi.org/10.1039/b504271b
  17. Marquette, C. A. and L. J. Blum (2006) State of the art and recent advances in immunoanalytical systems. Biosens. Bioelectron. 21: 1424-1433 https://doi.org/10.1016/j.bios.2004.09.037
  18. Dupuy, A. M., S. Lehmann, and J. P. Cristol (2005) Protein biochip systems for the clinical laboratory. Clin. Chem. Lab. Med. 43: 1291-1302 https://doi.org/10.1515/CCLM.2005.223
  19. Richalet-Secordel, P. M., F. Poisson, and M. H. Van Re-genmortel (1996) Uses of biosensor technology in the development of probes for viral diagnosis. Clin. Diagn. Virol. 5: 111-119 https://doi.org/10.1016/0928-0197(96)00212-7
  20. Purvis, D., O. Leonardova, D. Farmakovsky, and V. Cher-kasov (2003) An ultrasensitive and stable potentiometric immunosensor. Biosens. Bioelectron. 18: 1385-1390 https://doi.org/10.1016/S0956-5663(03)00066-6
  21. Lee, W. E., H. G. Thompson, J. G. Hall, and D. E. Bader (2000) Rapid detection and identification of biological and chemical agents by immunoassay, gene probe assay and enzyme inhibition using a silicon-based biosensor. Biosens. Bioelectron. 14: 795-804 https://doi.org/10.1016/S0956-5663(99)00059-7
  22. Choi, W. J. and J. K. Park (2006) A bio-fluiclic device for adaptive sample pretreatment and its application to measurements of Escherichia coli concentrations. Biotechnol. Bioprocess Eng. 11: 54-60 https://doi.org/10.1007/BF02931869
  23. Choi, J. W., Y. S. Nam, and M. Fujihira (2004) Nanoscale fabrication of biomolecular layer and its application to biodevices. Biotechnol. Bioprocess Eng. 9: 76-85 https://doi.org/10.1007/BF02932988