A Fermentation Strategy for Anti-MUC1 C595 Diabody Expression in Recombinant Escherichia Coli

  • Lan, John Chi-Wei (Biochemical Recovery Group, Department of Chemical Engineering, School of Engineering, University of Birmingham) ;
  • Ling, Tau Chuan (Biochemical Recovery Group, Department of Chemical Engineering, School of Engineering, University of Birmingham) ;
  • Hamilton, Grant (Biochemical Recovery Group, Department of Chemical Engineering, School of Engineering, University of Birmingham) ;
  • Lyddiatt, Andrew (Biochemical Recovery Group, Department of Chemical Engineering, School of Engineering, University of Birmingham)
  • Published : 2006.10.30

Abstract

The development of fermentation conditions for the production of C595 diabody fragment (dbFv) in E. coli HB2151 clone has been explored. Investigations were carried out to study the effect of carbon supplements over the expression period, the comparison of C595 dbfv production in synthetic and complex media, the influence of acetic acid upon antibody production, and comparison of one-stage and two-stage processes operated at batch or fed-batch modes in bioreactor. Yeast extract supplied during expression yielded more antibody fragment than any other carbon supply. The synthetic medium presented higher specific productivity (0.066 mg dbFv $g^{-1}$ dry cell weight) when compared to the complex medium (0.044 mg dbFv $g^{-1}$ DCW). The comparison of fermentation strategies demonstrated that (1) one-stage fed-batch fermentation performed higher C595 dbFv production than that operated in batch mode which was significantly affected by acetate concentration; (2) a two-stage batch operation could enhance C595 dbFv production. It was found that a concentration of 12.3 mg $L^{-1}$ broth of C595 dbFv and a cell concentration of 10.8g $L^{-1}$ broth were achieved at the end of two-stage operation in 5-L fermentation.

Keywords

References

  1. Gendler, S. J., C. A. Lancaster, J. Taylor-Papadimitriou, T. Duhig, N. Peat, J. Burchell, L. Pemberton, E. N. Lalani, and D. Wilson (1990) Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J. Biol. Chem. 265: 15286-15293
  2. Petrakou, E., A. Murray, C. Rosamund, L. Graves, and M. R. Price (1998) Evaluation of Pepscan analyses for epitope mapping of anti-MUC1 monoclonal antibodies--a comparative study and review of five antibodies. Anticancer. Res. 18:4419-4421
  3. Denton, G., K. Brady, B. K. Lo, A. Murray, C. R. Graves, O. D. Hughes, S. J. Tendler, C. A. Laughton, and M. R. Price (1999) Production and characterization of an anti-(MUC1 mucin) recombinant diabody. Cancer Immunol Immunother. 48: 29-38 https://doi.org/10.1007/s002620050545
  4. Berruti, A., M. Tampellini, M. Torta, T. Buniva, G. Gor-zegno, and L. Dogliotti (1994) Prognostic value in predicting overall survival of two mucinous markers: CA 15-3 and CA 125 in breast cancer patients at first relapse of disease. Eur. J. Cancer 30A: 2082-2084
  5. Martoni, A., C. Zamagni, B. Bellanova, L. Zanichelli, F. Vecchi, N. Cacciari, E. Strocchi, and F. Pannuti (1995) CEA, MCA, CA 15.3 and CA 549 and their combinations in expressing and monitoring metastatic breast cancer: a prospective comparative study. Eur. J. Cancer 31A: 1615-1621
  6. Price, M. R., S. Briggs, M. J. Scanlon, S. J. B. Tendler, P. E. Sibley, and C. W. Hand (1991) The mucin antigens: what are we measuring? Dis. Markers 9: 205-212
  7. Dixon, A. R., M. R. Price, C. W. Hand, P. E. Sibley, C. Selby, and R. W. Blarney (1993) Epithelial mucin core antigen (EMCA) in assessing therapeutic response in advanced breast cancer--a comparison with CA15.3. Br. J. Cancer 68: 947-949 https://doi.org/10.1038/bjc.1993.459
  8. Croce, M. V, M. T. Isla-Larrain, S. O. Demichelis, J. R. Gori, M. R. Price, and A. Segal-Eiras (2003) Tissue and serum MUC1 mucin detection in breast cancer patients. Breast. Cancer Res. Treat. 81: 195-207 https://doi.org/10.1023/A:1026110417294
  9. Perkins, A. C, I. M. Symonds, M. V. Pimm, M. R. Price, M. L. Wastie, and E. M. Symonds (1993) Immunoscinti-graphy of ovarian carcinoma using a monoclonal antibody (111In-NCRC48) defining a polymorphic epithelial mucin (PEM) epitope. Nucl. Med. Commun. 14: 578-586 https://doi.org/10.1097/00006231-199307000-00011
  10. Holliger, P. and G. Winter (1997) Diabodies: small bis-pecific antibody fragments. Cancer Immunol. Immunother. 45: 128-130 https://doi.org/10.1007/s002620050414
  11. Wu, J., J. A. Longmate, G. Adamus, P. A. Hargrave, and E. K. Wakeland (1996) Interval mapping of quantitative trait loci controlling humoral immunity to exogenous antigens: evidence that non-MHC immune response genes may also influence susceptibility to autoimmunity. J. Immunol. 157: 2498-2505
  12. Shiloach, J. and R. Fass (2005) Growing E. coli to high cell density A historical perspective on method development. Biotechnol. Adv. 23: 345-357 https://doi.org/10.1016/j.biotechadv.2005.04.004
  13. Zhang, Z. R., D. A. O'Sullivan, and A. Lyddiatt (1999) Magnetically stabilised fluidised bed adsorption: practical benefit of uncoupling bed expansion from fluid velocities in the purification of a recombinant protein from Escherichia coli. J. Chem. Technol. Biotechnol. 74: 270-274 https://doi.org/10.1002/(SICI)1097-4660(199903)74:3<270::AID-JCTB24>3.0.CO;2-X
  14. Farid, S. S. (2006) Process economics of industrial monoclonal antibody manufacture. J. Chromatogr. B In press
  15. Lau, J., C. Tran, P. Licari, and J. Galazzo (2004) Development of a high cell-density fed-batch bioprocess for the heterologous production of 6-deoxyerythronolide B in Escherichia coli. J. Biotechnol. 110: 95-103 https://doi.org/10.1016/j.jbiotec.2004.02.001
  16. Seo, J. H. and J. E. Bailey (1985) Effects of recombinant plasmid content on growth properties and cloned gene product formation in Escherichia coli. Biotechnol. Bioeng. 27: 1668-1674 https://doi.org/10.1002/bit.260271207
  17. Vyas, V. V., S. Gupta, and P. Sharma (1994) Stability of a recombinant shuttle plasmid in Bacillus subtilis and Es-cherichia coli. Enzyme Microb. Technol. 16: 240-246 https://doi.org/10.1016/0141-0229(94)90049-3
  18. Lan, J. C., T. C. Ling, G. Hamilton, and A. Lyddiatt (2006) Production of an anti-MUC1 C595 dbFv antibody fragment in recombinant Escherichia coli. Process Biochem. In press
  19. Eiteman, M. A. and E. Altman (2006) Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol. 24: 530-536 https://doi.org/10.1016/j.tibtech.2006.09.001
  20. Meyer, H.-R., C. Leist, and A. Fiechter (1984) Acetate formation in continuous culture of Escherichia coli K12 D1 on defined and complex media. J. Biotechnol. 1: 355-358 https://doi.org/10.1016/0168-1656(84)90027-0
  21. Riesenberg, D., K. Menzel, V. Schulz, K. Schumann, G. Veith, G. Zuber, and W. A. Knorre (1990) High cell density fermentation of recombinant Escherichia coli expressing human interferon alpha 1. Appl. Microbiol. Biotechnol. 34: 77-82
  22. Yee, L. and H. W. Blanch (1992) Recombinant protein expression in high cell density fed-batch cultures of Escherichia coli. Biotechnology 10: 1550-1556 https://doi.org/10.1038/nbt1292-1550
  23. Bostrom, M., K. Markland, A. M. Sanden, M. Hedhammar, S. Hober, and G. Larsson (2005) Effect of substrate feed rate on recombinant protein secretion, degradation and inclusion body formation in Escherichia coli. Appl. Microbiol. Biotechnol. 68: 82-90 https://doi.org/10.1007/s00253-004-1855-4