Browse > Article

A Fermentation Strategy for Anti-MUC1 C595 Diabody Expression in Recombinant Escherichia Coli  

Lan, John Chi-Wei (Biochemical Recovery Group, Department of Chemical Engineering, School of Engineering, University of Birmingham)
Ling, Tau Chuan (Biochemical Recovery Group, Department of Chemical Engineering, School of Engineering, University of Birmingham)
Hamilton, Grant (Biochemical Recovery Group, Department of Chemical Engineering, School of Engineering, University of Birmingham)
Lyddiatt, Andrew (Biochemical Recovery Group, Department of Chemical Engineering, School of Engineering, University of Birmingham)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.11, no.5, 2006 , pp. 425-431 More about this Journal
Abstract
The development of fermentation conditions for the production of C595 diabody fragment (dbFv) in E. coli HB2151 clone has been explored. Investigations were carried out to study the effect of carbon supplements over the expression period, the comparison of C595 dbfv production in synthetic and complex media, the influence of acetic acid upon antibody production, and comparison of one-stage and two-stage processes operated at batch or fed-batch modes in bioreactor. Yeast extract supplied during expression yielded more antibody fragment than any other carbon supply. The synthetic medium presented higher specific productivity (0.066 mg dbFv $g^{-1}$ dry cell weight) when compared to the complex medium (0.044 mg dbFv $g^{-1}$ DCW). The comparison of fermentation strategies demonstrated that (1) one-stage fed-batch fermentation performed higher C595 dbFv production than that operated in batch mode which was significantly affected by acetate concentration; (2) a two-stage batch operation could enhance C595 dbFv production. It was found that a concentration of 12.3 mg $L^{-1}$ broth of C595 dbFv and a cell concentration of 10.8g $L^{-1}$ broth were achieved at the end of two-stage operation in 5-L fermentation.
Keywords
diabody fragment; recombinant E. coli fermentation; C595 dbFv; cell concentration; specific productivity;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Gendler, S. J., C. A. Lancaster, J. Taylor-Papadimitriou, T. Duhig, N. Peat, J. Burchell, L. Pemberton, E. N. Lalani, and D. Wilson (1990) Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J. Biol. Chem. 265: 15286-15293
2 Zhang, Z. R., D. A. O'Sullivan, and A. Lyddiatt (1999) Magnetically stabilised fluidised bed adsorption: practical benefit of uncoupling bed expansion from fluid velocities in the purification of a recombinant protein from Escherichia coli. J. Chem. Technol. Biotechnol. 74: 270-274   DOI   ScienceOn
3 Farid, S. S. (2006) Process economics of industrial monoclonal antibody manufacture. J. Chromatogr. B In press
4 Lan, J. C., T. C. Ling, G. Hamilton, and A. Lyddiatt (2006) Production of an anti-MUC1 C595 dbFv antibody fragment in recombinant Escherichia coli. Process Biochem. In press
5 Meyer, H.-R., C. Leist, and A. Fiechter (1984) Acetate formation in continuous culture of Escherichia coli K12 D1 on defined and complex media. J. Biotechnol. 1: 355-358   DOI   ScienceOn
6 Bostrom, M., K. Markland, A. M. Sanden, M. Hedhammar, S. Hober, and G. Larsson (2005) Effect of substrate feed rate on recombinant protein secretion, degradation and inclusion body formation in Escherichia coli. Appl. Microbiol. Biotechnol. 68: 82-90   DOI
7 Perkins, A. C, I. M. Symonds, M. V. Pimm, M. R. Price, M. L. Wastie, and E. M. Symonds (1993) Immunoscinti-graphy of ovarian carcinoma using a monoclonal antibody (111In-NCRC48) defining a polymorphic epithelial mucin (PEM) epitope. Nucl. Med. Commun. 14: 578-586   DOI
8 Riesenberg, D., K. Menzel, V. Schulz, K. Schumann, G. Veith, G. Zuber, and W. A. Knorre (1990) High cell density fermentation of recombinant Escherichia coli expressing human interferon alpha 1. Appl. Microbiol. Biotechnol. 34: 77-82
9 Croce, M. V, M. T. Isla-Larrain, S. O. Demichelis, J. R. Gori, M. R. Price, and A. Segal-Eiras (2003) Tissue and serum MUC1 mucin detection in breast cancer patients. Breast. Cancer Res. Treat. 81: 195-207   DOI   ScienceOn
10 Denton, G., K. Brady, B. K. Lo, A. Murray, C. R. Graves, O. D. Hughes, S. J. Tendler, C. A. Laughton, and M. R. Price (1999) Production and characterization of an anti-(MUC1 mucin) recombinant diabody. Cancer Immunol Immunother. 48: 29-38   DOI
11 Berruti, A., M. Tampellini, M. Torta, T. Buniva, G. Gor-zegno, and L. Dogliotti (1994) Prognostic value in predicting overall survival of two mucinous markers: CA 15-3 and CA 125 in breast cancer patients at first relapse of disease. Eur. J. Cancer 30A: 2082-2084
12 Martoni, A., C. Zamagni, B. Bellanova, L. Zanichelli, F. Vecchi, N. Cacciari, E. Strocchi, and F. Pannuti (1995) CEA, MCA, CA 15.3 and CA 549 and their combinations in expressing and monitoring metastatic breast cancer: a prospective comparative study. Eur. J. Cancer 31A: 1615-1621
13 Price, M. R., S. Briggs, M. J. Scanlon, S. J. B. Tendler, P. E. Sibley, and C. W. Hand (1991) The mucin antigens: what are we measuring? Dis. Markers 9: 205-212
14 Seo, J. H. and J. E. Bailey (1985) Effects of recombinant plasmid content on growth properties and cloned gene product formation in Escherichia coli. Biotechnol. Bioeng. 27: 1668-1674   DOI   ScienceOn
15 Petrakou, E., A. Murray, C. Rosamund, L. Graves, and M. R. Price (1998) Evaluation of Pepscan analyses for epitope mapping of anti-MUC1 monoclonal antibodies--a comparative study and review of five antibodies. Anticancer. Res. 18:4419-4421
16 Shiloach, J. and R. Fass (2005) Growing E. coli to high cell density A historical perspective on method development. Biotechnol. Adv. 23: 345-357   DOI   ScienceOn
17 Eiteman, M. A. and E. Altman (2006) Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol. 24: 530-536   DOI   ScienceOn
18 Holliger, P. and G. Winter (1997) Diabodies: small bis-pecific antibody fragments. Cancer Immunol. Immunother. 45: 128-130   DOI
19 Lau, J., C. Tran, P. Licari, and J. Galazzo (2004) Development of a high cell-density fed-batch bioprocess for the heterologous production of 6-deoxyerythronolide B in Escherichia coli. J. Biotechnol. 110: 95-103   DOI   ScienceOn
20 Wu, J., J. A. Longmate, G. Adamus, P. A. Hargrave, and E. K. Wakeland (1996) Interval mapping of quantitative trait loci controlling humoral immunity to exogenous antigens: evidence that non-MHC immune response genes may also influence susceptibility to autoimmunity. J. Immunol. 157: 2498-2505
21 Yee, L. and H. W. Blanch (1992) Recombinant protein expression in high cell density fed-batch cultures of Escherichia coli. Biotechnology 10: 1550-1556   DOI
22 Dixon, A. R., M. R. Price, C. W. Hand, P. E. Sibley, C. Selby, and R. W. Blarney (1993) Epithelial mucin core antigen (EMCA) in assessing therapeutic response in advanced breast cancer--a comparison with CA15.3. Br. J. Cancer 68: 947-949   DOI   ScienceOn
23 Vyas, V. V., S. Gupta, and P. Sharma (1994) Stability of a recombinant shuttle plasmid in Bacillus subtilis and Es-cherichia coli. Enzyme Microb. Technol. 16: 240-246   DOI   ScienceOn