Optimization of Culture Conditions for the Bioconversion of Vitamin $D_3\;to\;1{\alpha}$,25-Dihydroxyvitamin $D_3$ Using Pseudonocardia autotrophica ID9302

  • Kang, Dae-Jung (ILDONG Research Laboratories, ILDONG Pharmaceutical Co., Ltd.) ;
  • Lee, Hong-Sub (ILDONG Research Laboratories, ILDONG Pharmaceutical Co., Ltd.) ;
  • Park, Joon-Tae (ILDONG Research Laboratories, ILDONG Pharmaceutical Co., Ltd.) ;
  • Bang, Ji-Sun (ILDONG Research Laboratories, ILDONG Pharmaceutical Co., Ltd.) ;
  • Hong, Soon-Kwang (Department of Biological Science, Myongji Unviersity) ;
  • Kim, Tae-Yong (ILDONG Research Laboratories, ILDONG Pharmaceutical Co., Ltd.)
  • 발행 : 2006.10.30

초록

We assessed the ability of a Pseudonocardia sp. from soil samples to bioconvert vitamin $D_3$. The optimal culture conditions for the bioconversion of vitamin $D_3$ to active $1{\alpha}$,25-dihydroxyvitamin $D_3$ were investigated by varying the carbon and nitrogen sources, the metal salt concentrations, the initial pH, and the temperature. Microbial transformations were carried out with the addition of vitamin $D_3$ dissolved in ethanol. They were sampled by extraction with methanol-dichloromethane and the samples were examined by HPLC. Optimum culture conditions were found to be 0.4% yeast extract, 1% glucose, 3% starch, 1% fish meal, 0.2% NaCl, 0.01% $K_2HPO_4$, 0.2% $CaCO_3$, 0.01% NaF, and pH 7.0 at $28^{\circ}C$. The optimal timing of the addition of vitamin $D_3$ for the production of calcitriol by Pseudonocardia autotrophica ID9302 was concurrent with the inoculation of seed culture broth. Maximum calcitriol productivity and the yield of bioconversion reached a value of 10.4mg/L and 10.4% respectively on the 7th day in a 75L fementer jar under the above conditions.

키워드

참고문헌

  1. DeLuca, H. F. and H. K. Schnoes (1983) Vitamin D: recent advances. Annu. Rev. Biochem. 52: 411-439 https://doi.org/10.1146/annurev.bi.52.070183.002211
  2. Madhok, T. C. and H. F. DeLuca (1979) Characteristics of the rat liver microsomal enzyme system converting cholecalciferol into 25-hydroxycholecalciferol. Evidence for the participation of cytochrome p-450. Biochem. J. 184: 491-499 https://doi.org/10.1042/bj1840491
  3. Ikekawa, N. (1987) Structures and biological activities of vitamin D metabolites and their analogs. Med. Res. Rev. 7: 333-366 https://doi.org/10.1002/med.2610070304
  4. Brenza, H. L. and H. F. DeLuca (2000) Regulation of 25-hydroxyvitamin $D_3$ $1{\alpha}-hydroxylase$ gene expression by parathyroid hormone and 1,25-dihydroxyvitamin $D_3$. Arch. Biochem. Biophys. 381: 143-152 https://doi.org/10.1006/abbi.2000.1970
  5. Xue, Y., A. C. Karaplis, G. N. Hendy, D. Goltzman, and D. Miao (2005) Genetic models show that parathyroid hormone and 1,25-dihydroxyvitamin $D_3$ play distinct and synergistic roles in postnatal mineral ion homeostasis and skeletal development. Hum. Mol. Genet. 14: 1515-1528 https://doi.org/10.1093/hmg/ddi160
  6. Beckman, M. J. and H. F. DeLuca (2002) Regulation of renal vitamin D receptor is an important determinant of $1{\alpha}$, 25-dihydroxyvitamin $D_3$ levels in vivo. Arch. Biochem. Biophys. 401: 44-52 https://doi.org/10.1016/S0003-9861(02)00010-3
  7. Hatakeyama, S., K. Sugawara, H. Numata, and S. Takano (1991) A novel convergent synthesis of (+)-$1{\alpha}$, 25-dihydroxyvitamin $D_3$ using a chromium(II) -mediated coupling reaction. J. Org. Chem. 56: 461-463 https://doi.org/10.1021/jo00001a092
  8. Andrews, D. R., D. H. R. Barton, R. H. Hesse, and M. M. Pechet (1986) Synthesis of 25-hydroxy- and $1{\alpha}$, 25-dihydroxyvitamin $D_3$ from vitamin $D_2$ (calciferol). J. Org. Chem. 51: 4819-4828 https://doi.org/10.1021/jo00375a013
  9. Kametani, T. and H. Furuyama (1987) Synthesis of vitamin $D_3$ and related compounds. Med. Res. Rev. 7: 147-171 https://doi.org/10.1002/med.2610070202
  10. Wang, Z. X., J. Zhuge, H. Fang, and B. A. Prior (2001) Glycerol production by microbial fermentation: a review. Biotechnol. Adv. 19:201-223 https://doi.org/10.1016/S0734-9750(01)00060-X
  11. Lau, J., C. Tran, P. Licari, and J. Galazzo (2004) Development of a high cell-density fed-batch bioprocess for the heterologous production of 6-deoxythronolide B in Escherichia coli. J. Biotechnol. 110: 95-103 https://doi.org/10.1016/j.jbiotec.2004.02.001
  12. Flores, E. R., F. Perez, and M. De La Torre (1997) Scale-up Bacillus thuringensis fermentation based on oxygen transfer. J. Ferment. Bioeng. 83: 561-564 https://doi.org/10.1016/S0922-338X(97)81137-3
  13. Uzura, A., T. Katsuragi, and Y. Tani (2001) Optimal conditions for production of (R)-1-phenylpropanol by Fusa-rium moniliforme strain MS31. J. Biosci. Bioeng. 92: 288-293 https://doi.org/10.1263/jbb.92.288
  14. Kulprecha, S., T. Ueda, T. Nihira, T. Yoshida, and H. Taguchi (1985) Optimum conditions for ursodeoxycholic acid production from lithocholic acid by Fusarium equiseti M41. Appl. Environ. Microbiol. 49: 338-344
  15. Wecht-Lifshitz, S. C, M. Gadman, and E. Zomer (1989) Process optimization and scale-up of the Bacillus thur-ingiensis fermentation. Isr. J. Entomol. 23: 239-246
  16. Lund, J. and H. F. DeLuca (1966) Biologically active metabolite of vitamin $D_3$ from bone, liver, and blood serum. J. Lipid Res. 7: 739-744
  17. Omar, R., M. A. Abdullah, M. A. Hasan, M. Marziah, and M. K. Siti Mazlina (2005) Optimization and elucidation of interactions between ammonium, nitrate and phosphate in Centella asiatica cell culture using response surface methodology. Biotechnol. Bioprocess Eng. 10: 192-197 https://doi.org/10.1007/BF02932012
  18. Jung, D.-Y., S. Jung, J.-S. Yun, J.-N. Kim, Y.-J. Wee, H.-G. Jang, and H.-W. Ryu (2005) Influences of cultural medium component on the production of poly(${\gammer}--glutamic$ acid) by Bacillus sp. RKY3. Biotechnol. Bioprocess Eng. 10: 289-295 https://doi.org/10.1007/BF02931844
  19. Sasaki, J., A. Mikami, K. Mizoue, and S. Omura (1991) Transformation of 25- and $1{\alpha}-hydroxyvitamin$ $D_3$ to $1{\alpha}$,25-dihydroxyvitamin $D_3$ by using Streptomyces sp. strains. Appl. Environ. Microbiol. 57: 2841-2846
  20. Hiwatashi, A., Y. Nishii, and Y. Ichikawa (1982) Purification of cytochrome P-450D $1{\alpha}$(25-hydroxyvitamin $D_3-1{\alpha}-hydroxylase$) of bovine kidney mitochondria. Biochem. Biophys. Res. Commun. 105: 320-327 https://doi.org/10.1016/S0006-291X(82)80047-8
  21. Kizawa, H., D. Tomura, M. Oda, A. Fukamizu, T. Hoshino, O. Gotoh, T Yasui, and H. Shoun (1991) Nucleotide sequence of the unique nitrate/nitrite-inducible cytochrome P-450 cDNA from Fusarium oxysporum. J. Biol. Chem. 266: 10632-10637
  22. Oh, Y.-K., Y.-J. Kim, J.-Y. Park, T. H. Lee, M.-S. Kim, and S. Park (2005) Biohydrogen production from carbon monoxide and water by Rhodopseudomonas palustris P4. Biotechnol. Bioprocess Eng. 10: 270-274 https://doi.org/10.1007/BF02932024