Improved Immobilized Enzyme Systems Using Spherical Micro Silica Sol-Gel Enzyme Beads

  • Lee, Chang-Won (School of Chemical and Biological Engineering, Seoul National University) ;
  • Yi, Song-Se (School of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Ju-Han (Institute of Molecular Biology and Genetics, Seoul National University) ;
  • Lee, Yoon-Sik (School of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Byung-Gee (School of Chemical and Biological Engineering, Seoul National University)
  • Published : 2006.08.30

Abstract

Spherical micro silica sol-gel immobilized enzyme beads were prepared in an emulsion system using cyclohexanone and Triton-X 114. The beads were used for the in situ immobilization of transaminase, trypsin, and lipase. Immobilization during the sol to gel phase transition was investigated to determine the effect of the emulsifying solvents, surfactants, and mixing process on the formation of spherical micro sol-gel enzyme beads and their catalytic activity. The different combinations of sol-gel precursors affected both activity and the stability of the enzymes, which suggests that each enzyme has a unique preference for the silica gel matrix dependent upon the characteristics of the precursors. The resulting enzyme-entrapped micronsized beads were characterized and utilized for several enzyme reaction cycles. These results indicated improved stability compared to the conventional crushed form silica sol-gel immobilized enzyme systems.

Keywords

References

  1. Tischer, W. and F. Wedekind (1999) Immobilized enzymes: Methods and applications. Top. Curr. Chem. 200: 95-126 https://doi.org/10.1007/3-540-68116-7_4
  2. Prakash, O. and L. S. B. Upadhyay (2006) Immobilization imparts stability to watermelon urease. Biotechnol. Bioprocess Eng. 11: 140-145 https://doi.org/10.1007/BF02931898
  3. Kim, J., C.-S. Lee, J. Oh, and B. G. Kim (2001) Production of egg yolk lysolecithin with immobilized phospholipase A2. Enzyme Microb. Technol. 29: 587-592 https://doi.org/10.1016/S0141-0229(01)00447-1
  4. Seo, W.-Y. and K. Lee (2004) Optimized conditions for in situ immobilization of lipase in aldehyde-siliica packed columns. Biotechnol. Bioprocess Eng. 9: 465-470 https://doi.org/10.1007/BF02933487
  5. Wang, T.-H. and W.-C. Lee (2003) Immobilization of proteins on magnetic nanoparticles. Biotechnol. Bioprocess Eng. 8: 263-267 https://doi.org/10.1007/BF02942276
  6. Gill, I. and A. Ballesteros (2000) Bioencapsulation within synthetic polymers (Part I): sol-gel encapsulated biologicals. Trends Biotechnol. 18: 282-296 https://doi.org/10.1016/S0167-7799(00)01457-8
  7. Gill, I. and A. Ballesteros (2000) Bioencapsulation within synthetic polymers (Part II): non-sol-gel protein-polymer biocomposites. Trends Biotechnol. 18: 469-479 https://doi.org/10.1016/S0167-7799(00)01493-1
  8. Kim, J. B., R. Delio, and J. S. Dordick (2002) Proteasecontaining silicates as active antifouling materials. Biotechnol. Prog. 18: 551-555 https://doi.org/10.1021/bp020036q
  9. Jin, W. and J. D. Brennan (2002) Properties and applications of proteins encapsulated within sol-gel derived materials. Anal. Chim. Acta 461: 1-36 https://doi.org/10.1016/S0003-2670(02)00229-5
  10. Livage, J. (1997) Sol-gel processes. Curr. Opin. Solid State Mater. Sci. 2: 132-138 https://doi.org/10.1016/S1359-0286(97)80057-5
  11. Vidoto, E. A., F. S. Vinhado, M. S. M. Moreira, O. R. Nascimento, Y. Iamamoto, and K. J. Ciuffi (2002) Immobilization of beta halogenated ironporphyrin in the silica matrix by the sol-gel process. J. Non-Cryst. Solids 304: 151-159 https://doi.org/10.1016/S0022-3093(02)01019-0
  12. Reetz, M. T., A. Zonta, and J. Simpelkamp (1995) Efficient heterogeneous biocatalysts by entrapment of lipases in hydrophobic sol-gel materials. Angew. Chem. Int. Ed. Engl. 34: 301-303 https://doi.org/10.1002/anie.199503011
  13. Reetz, M. T., A. Zonta, and J. Simpelkamp (1996) Efficient immobilization of lipases by entrapment in hydrophobic sol-gel materials. Biotechnol. Bioeng. 49: 527-534 https://doi.org/10.1002/(SICI)1097-0290(19960305)49:5<527::AID-BIT5>3.0.CO;2-L
  14. Gill, I. and A. Ballesteros (1998) Encapsulation of biologicals within silicate, siloxane, and hybrid sol-gel polymers: An efficient and generic approach. J. Am. Chem. Soc. 120: 8587-8598 https://doi.org/10.1021/ja9814568
  15. Chen, Q., G. Kenausis, and A. Heller (1998) Stability of oxidases immobilized in silica gels. J. Am. Chem. Soc. 120: 4582-4585 https://doi.org/10.1021/ja971750k
  16. Schuleit, M. and P. L. Luisi (2001) Enzyme immobilization in silica-hardened organogels. Biotechnol. Bioeng. 72: 249-253 https://doi.org/10.1002/1097-0290(20000120)72:2<249::AID-BIT13>3.0.CO;2-B
  17. Lobnik, A. and M. Cajlakovic (2001) Sol-gel based optical sensor for continuous determination of dissolved hydrogen peroxide. Sens. Actuators B 74: 194-199 https://doi.org/10.1016/S0925-4005(00)00733-4
  18. Bharathi, S. and O. Lev (2000) Sol-gel-derived prussian blue-silicate amperometric glucose biosensor. Appl. Biochem. Biotechnol. 89: 209-216 https://doi.org/10.1385/ABAB:89:2-3:209
  19. Williams, A. K. and J. T. Hupp (1998) Sol-gel-encapsulated alcohol dehydrogenase as a versatile, environmentally stabilized sensor for alcohols and aldehydes. J. Am. Chem. Soc. 120: 4366-4371 https://doi.org/10.1021/ja973772c
  20. Ramanathan, K., B. Rees-Jonsson, and B. Danielsson (2001) Sol-gel based thermal biosensor for glucose. Anal. Chim. Acta 427: 1-10 https://doi.org/10.1016/S0003-2670(00)01095-3
  21. Lee, W.-Y., K. S. Lee, T.-H. Kim, M.-C. Shin, and J.-K. Park (2000) Microfabricated conductometric urea biosensor based on sol-gel immobilized urease. Electroanalysis 12: 78-82 https://doi.org/10.1002/(SICI)1521-4109(20000101)12:1<78::AID-ELAN78>3.0.CO;2-B
  22. Iskandar, F., Mikrajuddin, and K. Okuyama (2001) In situ production of spherical silica particles containing selforganized mesopores. Nano Lett. 1: 231-234 https://doi.org/10.1021/nl0155227
  23. Adachi, K., T. Iwamura, and Y. Chujo (2004) Novel synthesis of submicrometer silica spheres in non-alcoholic solvent by microwave-assisted sol-gel method. Chem. Lett. 33: 1504-1505 https://doi.org/10.1246/cl.2004.1504
  24. Lee, C.-M., S. Lim, G.-Y. Kim, D. Kim, D.-W. Kim, H.-C. Lee, and K.-Y. Lee (2004) Rosin microparticles as drug carriers: Influence of various solvents on the formation of particles and sustained-release of indomethacin. Biotechnol. Bioprocess Eng. 9: 476-481 https://doi.org/10.1007/BF02933489
  25. Matsumoto, T., Y. Takayama, N. Wada, H. Onoda, K. Kojima, H. Yamada, and H. Wakabayashi (2003) Acidfree synthesis of poly-organo-siloxane spherical particles using a W/O emulsion. J. Mater. Chem. 13: 1764-1770 https://doi.org/10.1039/b301465g
  26. Barbe, C. J. A. and J. Barlett (2001) Controlled release ceramic particles, compositions thereof, processes of preparation and methods of use. WO0162232
  27. Bush, A. J., R. Beyer, R. Trautman, C. J. Barbé, and J. R. Bartlett (2004) Ceramic micro-particles synthesized using emulsion and sol-gel techonolgy: An investigation into the controlled release of encapsulants and the tailoring of micro- particle size. J. Sol-Gel Sci. Technol. 32: 85-90 https://doi.org/10.1007/s10971-004-5770-z
  28. Barbe, C. J., J. Bartlett, L. Kong, K. Finnie, H. Q. Lin, M. Larkin, S. Calleja, A. Bush, and G. Calleja (2004) Silica particles: A novel drug-delivery system. Adv. Mater. 16: 1959-1966 https://doi.org/10.1002/adma.200400771
  29. Shin, J. S. and B. G. Kim (1998) Kinetic modeling of omega-transamination for enzymatic kinetic resolution of alpha-methylbenzylamine. Biotechnol. Bioeng. 60: 534-540 https://doi.org/10.1002/(SICI)1097-0290(19981205)60:5<534::AID-BIT3>3.0.CO;2-L
  30. Shin, J. S. and B. G. Kim (1996) Optical resolution of racemic 1-phenylethylamine catalyzed by aminotransferase and dehydrogenase. Ann. N. Y. Acad. Sci. 799: 717-724 https://doi.org/10.1111/j.1749-6632.1996.tb33280.x
  31. O'Connell, P. J. and J. Varley (2001) Immobilization of Candida rugosa lipase on colloidal gas aphrons (CGAs). Biotechnol. Bioeng. 74: 264-269 https://doi.org/10.1002/bit.1116
  32. Nouaimi, M., K. Möschel, and H. Bisswanger (2001) Immobilization of trypsin on polyester fleece via different spacers. Enzyme Microb. Technol. 29: 567-574 https://doi.org/10.1016/S0141-0229(01)00429-X