Synergistic Utilization of Dichloroethylene as Sole Carbon Source by Bacterial Consortia Isolated from Contaminated Sites in Africa

  • Olaniran, Ademola O. (Department of Microbiology, Faculty of Science and Agriculture, University of KwaZulu-Natal(Westville Campus)) ;
  • Mfumo, Nokukhanya H. (Department of Microbiology, Faculty of Science and Agriculture, University of KwaZulu-Natal(Westville Campus)) ;
  • Pillay, Dorsamy (Department of Microbiology, Faculty of Science and Agriculture, University of KwaZulu-Natal(Westville Campus)) ;
  • Pillay, Balakrishna (Department of Microbiology, Faculty of Science and Agriculture, University of KwaZulu-Natal(Westville Campus))
  • Published : 2006.06.30

Abstract

The widespread use and distribution of chloroethylene organic compounds is of serious concern owing to their carcinogenicity and toxicity to humans and wildlife. In an effort to develop active bacterial consortia that could be useful for bioremediation of chloroethylene-contaminated sites in Africa, 16 combinations of 5 dichloroethylene (DCE)-utilizing bacteria, isolated from South Africa and Nigeria, were assessed for their ability to degrade cis- and trans- DCEs as the sole carbon source. Three combinations of these isolates were able to remove up to 72% of the compounds within 7 days. Specific growth rate constants of the bacterial consortia ranged between 0.465 and $0.716\;d^{-1}$ while the degradation rate constants ranged between 0.184 and $0.205\;d^{-1}$ with $86.36{\sim}93.53\;and\;87.47{\sim}97.12%$ of the stoichiometric-expected chloride released during growth of the bacterial consortia in cis- and trans-DCE, respectively. Succession studies of the individual isolates present in the consortium revealed that the biodegradation process was initially dominated by Achromobacter xylosoxidans and subsequently by Acinetobacter sp. and Bacillus sp., respectively. The results of this study suggest that consortia of bacteria are more efficient than monocultures in the aerobic biodegradation of DCEs, degrading the compounds to levels that are up to 60% below the maximum allowable limits in drinking water.

Keywords

References

  1. Fetzner, S. (1998) Bacterial dehalogenation. Appl. Microbiol. Biotechnol. 50: 633-657 https://doi.org/10.1007/s002530051346
  2. Richard, A. M. and E. S. Hunter, 3rd. (1996) Quantitative structure-activity relationships for the developmental toxicity of haloacetic acids in mammalian whole embryo culture. Teratology 53: 352-360 https://doi.org/10.1002/(SICI)1096-9926(199606)53:6<352::AID-TERA6>3.0.CO;2-1
  3. Brown-Woodman, P. D. C., L. C. Hayes, F. Huq, C. Herlihy, K. Picker, and W. S. Webster (1998) In vitro assessment of the effect of halogenated hydrocarbons: chloroform, dichloromethane, and dibromoethane on embryonic development of rat. Teratology 57: 321-333 https://doi.org/10.1002/(SICI)1096-9926(199806)57:6<321::AID-TERA5>3.0.CO;2-Z
  4. Akers, K. S., G. D. Sinks, and T. W. Schultz (1999) Structure-toxicity relationships for selected halogenated aliphatic chemicals. Environ. Toxicol. Pharmacol. 7: 33-39 https://doi.org/10.1016/S1382-6689(98)00048-9
  5. Hileman, B. (1993) Concerns broaden over chlorine and chlorinated hydrocarbons. Chem. Eng. News 19: 11-20
  6. Gribble, G. W. (1994) The natural production of chlorinated compounds. Environ. Sci. Technol. 28: 310A-319A https://doi.org/10.1021/es00056a001
  7. Gribble, G. W. (1996) Naturally occurring organohalogen compounds: a comprehensive survey. Prog. Org. Nat. Prod. 68: 1-498
  8. Milde, G., M. Nerger, and R. Mergler (1998) Biological degradation of volatile chlorinated hydrocarbons in groundwater. Water Sci. Technol. 20: 67-73
  9. Squillace, P. J., M. J. Moran, W. W. Lapham, C. V. Price, R. M. Clawges, and J. S. Zogorski (1999) Volatile organic compounds in untreated ambient groundwater of the United States, 1985-1995. Environ. Sci. Technol. 33: 4176-4187 https://doi.org/10.1021/es990234m
  10. Vogel, T. M., C. S. Criddle, and P. L. McCarty (1987) Transformations of halogenated aliphatic compounds. Environ. Sci. Technol. 21: 722-736 https://doi.org/10.1021/es00162a001
  11. Tandoi, V., T. D. DiStefano, P. A. Bowser, J. M. Gossett, and S. H. Zinder (1994) Reductive dehalogenation of chlorinated ethenes and halogenated ethanes by a highrate anaerobic enrichment culture. Environ. Sci. Technol. 28: 973-979 https://doi.org/10.1021/es00054a033
  12. Maymo-Gatelle, X., V. Tandoi, J. M. Gossett, and S. H. Zinder (1995) Characterization of an H2-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethane in the absence of methanogenesis and acetogenesis. Appl. Environ. Microbiol. 61: 3928-3933
  13. DiStefano, T. D., J. M. Gossett, and S. H. Zinder (1992) Hydrogen as an electron donor for the dechlorination of tetrachloroethene by an anaerobic mixed culture. Appl. Environ. Microbiol. 58: 3622-3629
  14. Loffler, F. E., K. M. Ritalahti, and J. M. Tiedje (1997) Dechlorination of chloroethenes is inhibited by 2-bromoethanesulfonate in the absence of methanogens. Appl. Environ. Microbiol. 63: 4982-4985
  15. Rosner, B. M., P. L. McCarty, and A. M. Sporemann (1997) In vitro studies on reductive vinyl chloride dehalogenation by an anaerobic mixed culture. Appl. Environ. Microbiol. 63: 4139-4144
  16. Sharma, P. K. and P. L. McCarty (1996) Isolation and characterization of a facultatively aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1,2- dichloroethene. Appl. Environ. Microbiol. 62: 761-765
  17. De Bruin, W. P., M. J. J. Kotterman, M. A. Posthumus, G. Schraa, A. J. B. Zehnder (1992) Complete biological reductive transformation of tetrachloroethylene to ethane. Appl. Environ. Microbiol. 58: 1996-2000
  18. Klier, N. J., R. J. West, and P. A. Donberg (1999) Aerobic biodegradation of dichloroethylenes in surface and subsurface soils. Chemosphere 38: 1175-1188 https://doi.org/10.1016/S0045-6535(98)00485-8
  19. Bradley, P. M. and F. H. Chapelle (2000) Aerobic microbial mineralization of dichloroethene as sole carbon source. Environ. Sci. Technol. 34: 221-223 https://doi.org/10.1021/es990785c
  20. Coleman, N. V., T. E. Mattes, J. M. Gossett, and J. C. Spain (2002) Biodegradation of cis-dichloroethene as the sole carbon source by a $\beta$-proteobacterium. Appl. Environ. Microbiol. 68: 2726-2730 https://doi.org/10.1128/AEM.68.6.2726-2730.2002
  21. Olaniran, A. O., D. Pillay, and B. Pillay (2004) Aerobic dechlorination of cis- and trans-dichloroethenes by some indigenous bacteria isolated from contaminated sites in Africa. J. Environ. Sci. 16: 968-972
  22. Bouwer, E. J. (1994) Bioremediation of chlorinated solvents using alternate electron acceptors. pp. 149-175. In: R. D. Norris, R. E. Hinchee, R. Brown, P. L. McCarty, L. Semprini, J. T. Wilson, D. H. Kampbell, M. Reinhard, E. J. Bouwer, R. C. Borden, T. M. Vogel, J. M. Thomas, and C. H. Ward (eds.). Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL, USA
  23. McCarty, P. L. and L. Semprini (1994) Groundwater treatment for chlorinated solvents. pp. 87-116. In: R. D. Norris, R. E. Hinchee, R. Brown, P. L. McCarty, L. Semprini, J. T. Wilson, D. H. Kampbell, M. Reinhard, E. J. Bouwer, R. C. Borden, T. M. Vogel, J. M. Thomas, and C. H. Ward (eds.). Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL, USA
  24. Vogel, T. M. (1994) Natural bioremediation of chlorinated solvents. pp. 201-225. In: R. D. Norris, R. E. Hinchee, R. Brown, P. L. McCarty, L. Semprini, J. T. Wilson, D. H. Kampbell, M. Reinhard, E. J. Bouwer, R. C. Borden, T. M. Vogel, J. M. Thomas, and C. H. Ward (eds.). Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL, USA
  25. Olaniran, A. O., A. I. Okoh, S. Ajisebutu, P. Golyshin, and G. O. Babalola (2002) The aerobic dechlorination activities of two bacterial species isolated from a refuse dumpsite in Nigeria. Int. Microbiol. 5: 21-24 https://doi.org/10.1007/s10123-002-0054-3
  26. Olaniran, A. O., D. Pillay, and B. Pillay (2004) Haloalkane and haloacid dehalogenases from aerobic bacterial isolates indigenous to contaminated sites in Africa demonstrate diverse substrate specificities. Chemosphere 55: 27-33 https://doi.org/10.1016/j.chemosphere.2003.10.067
  27. Hartmans, S., A. Kaptein, J. Tramper, and J. A. M. de Bont (1992) Characterization of a Mycobacterium sp. and a Xanthomonas sp. for the removal of vinyl chloride and 1,2-dichloroethane from waste gases. Appl. Microbiol. Biotechnol. 37: 796-801 https://doi.org/10.1007/BF00174848
  28. Marchesi, J. R., T. Sato, A. J. Weightman, T. A. Martin, J. C. Fry, S. J. Hiom, D. Dymock, and W. G. Wade (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 64: 795-799
  29. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  30. Seeley, H. W. and P. J. Vandemark (1981) Microbes in Action. A Laboratory Manual of Microbiology. 3rd ed., WH Freeman and Company, New York, NY, USA
  31. Gerhardt, P., R. Murray, R. Costilow, E. Nester, W. Wood, N. Krieg, and G. B. Phillips (1991) Manual of Methods for General Bacteriology. American Society for Microbiology, Washington, DC, USA
  32. Alexander, M. and K. M. Snow (1989) Reactions and movements of organic chemicals in soils. pp. 243-269. In: B. L. Sawhney and K. Brown (eds.). Soil Science Society of America, Madison, WI, USA
  33. LaGrega, M. D., P. L. Buckingham, and J. C. Evans (1994) Growth kinetics. pp. 581. In: B. J. Clark and J. M. Morris (eds.). Hazardous Waste Management. McGraw- Hill, Inc., New York, NY, USA
  34. Bergmann, J. G. and J. Sanik (1957) Determination of trace amounts of chlorine in naphtha. Anal. Chem. 29: 241-243 https://doi.org/10.1021/ac60122a018
  35. Ensign, S. A., M. R. Hyman, and D. J. Arp (1992) Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain. Appl. Environ. Microbiol. 58: 3038-3046
  36. Van Hylckama Vlieg, J. E. T., W. de Koning, and D. B. Janssen (1996) Transformation kinetics of chlorinated ethenes by Methylosinus trichosporium OB3b and detection of unstable epoxides by on-line gas chromatography. Appl. Environ. Microbiol. 62: 3304-3312
  37. Van Hylckama Vlieg, J. E. T., J. Kingma, A. J. van den Wijngaard, and D. B. Janssen (1998) A glutathione Stransferase with activity towards cis-dichloroepoxyethane is involved in isoprene utilization by Rhodococcus sp. strain AD45. Appl. Environ. Microbiol. 64: 2800-2805
  38. Koziollek, P., D. Bryniok, and H. J. Knackmuss (1999) Ethene as an auxiliary substrate for the cooxidation of cisdichloroethene and vinyl chloride. Arch. Microbiol. 172: 240-246 https://doi.org/10.1007/s002030050766
  39. Dolfing, J., A. J. van den Wijngaard, and D. B. Janssen (1993) Microbiological aspects of the removal of chlorinated hydrocarbons from air. Biodegradation 4: 261-282 https://doi.org/10.1007/BF00695974
  40. Anzai, Y., H. Kim, J. Y. Park, H. Wakabayashi, and H. Oyaizu (2000) Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int. J. Syst. Evol. Microbiol. 50: 1563-1589 https://doi.org/10.1099/00207713-50-4-1563
  41. Flynn, S. J., F. E. Loffler, and J. M. Tiedje (2000) Microbial community changes associated with a shift from reductive dechlorination of PCE to reductive dechlorination of cis-DCE and VC. Environ. Sci. Technol. 34: 1056-1061 https://doi.org/10.1021/es9908164
  42. Sutherland, T. D., I. Horne, M. J. Lacey, R. L. Harcourt, R. J. Russell, and J. G. Oakeshott (2000) Enrichment of an endosulfan-degrading mixed bacterial culture. Appl. Environ. Microbiol. 66: 2822-2828 https://doi.org/10.1128/AEM.66.7.2822-2828.2000
  43. Park, H. S., S. J. Lim, Y. K. Chang, A. G. Livingstone, and H. S. Kim (1999) Degradation of chloronitrobenzenes by a coculture of Pseudomonas putida and a Rhodococcus sp. Appl. Environ. Microbiol. 65: 1083-1091
  44. Alvey, S. and D. E. Crowley (1996) Survival and activity of an atrazine-mineralizing bacterial consortium in rhizosphere soil. Environ. Sci. Technol. 30: 1596-1603 https://doi.org/10.1021/es950575+
  45. Katsivela, E., D. Bonse, A. Krueger, C. Stroempl, A. Livingstone, and R. M. Wittich (1999) An extractive membrane biofilm reactor for degradation of 1,3-dichloropropene in industrial waste water. Appl. Microbiol. Biotechnol. 52: 853-862 https://doi.org/10.1007/s002530051603
  46. Ralebits, T. K., E. Senior, and H. W. van Verseveld (2002) Microbial aspects of atrazine degradation in natural environments. Biodegradation 13: 11-19 https://doi.org/10.1023/A:1016329628618