Biochemical Reactions on a Microfluidic Chip Based on a Precise Fluidic Handling Method at the Nanoliter Scale

  • Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Sang-Ho (School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Kim, Yun-Gon (School of Chemical and Biological Engineering and Institute of Molecular Biology and Genetics, Seoul National University) ;
  • Choi, Chang-Hyoung (Department of Chemical Engineering, Chungnam National University) ;
  • Kim, Yong-Kweon (School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Kim, Byung-Gee (School of Chemical and Biological Engineering and Institute of Molecular Biology and Genetics, Seoul National University)
  • 발행 : 2006.04.30

초록

A passive microfluidic delivery system using hydrophobic valving and pneumatic control was devised for microfluidic handling on a chip. The microfluidic metering, cutting, transport, and merging of two liquids on the chip were correctly performed. The error range of the accuracy of microfluid metering was below 4% on a 20 nL scale, which showed that microfluid was easily manipulated with the desired volume on a chip. For a study of the feasibility of biochemical reactions on the chip, a single enzymatic reaction, such as ${\beta}-galactosidase$ reaction, was performed. The detection limit of the substrate, i.e. fluorescein $di-{\beta}-galactopyranoside$ (FDG) of the ${\beta}-galactosidase$ (6.7 fM), was about 76 pM. Additionally, multiple biochemical reactions such as in vitro protein synthesis of enhanced green fluorescence protein (EGFP) were successfully demonstrated at the nanoliter scale, which suggests that our microfluidic chip can be applied not only to miniaturization of various biochemical reactions, but also to development of the microfluidic biochemical reaction system requiring a precise nano-scale control.

키워드

참고문헌

  1. Reyes, D. R., D. Iossifidis, P. A. Auroux, and A. Manz (2002) Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem. 74: 2623-2636 https://doi.org/10.1021/ac0202435
  2. Auroux, P. A., D. Iossifidis, D. R. Reyes, and A. Manz (2002) Micro total analysis systems. 2. Analytical standard operations and applications. Anal. Chem. 74: 2637-2652 https://doi.org/10.1021/ac020239t
  3. Zhao, B., J. S. Moore, and D. J. Beebe (2001) Surfacedirected liquid flow inside microchannels. 291: 1023-1026 https://doi.org/10.1126/science.291.5506.1023
  4. Ocvirk, G., M. Munroe, T. Tang, R. Oleschuk, K. Westra, and D. J. Harrison (2000) Electrokinetic control of fluid flow in native poly(dimethylsiloxane) capillary electrophoresis devices. Electrophoresis 21: 107-115 https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<107::AID-ELPS107>3.0.CO;2-Y
  5. Gallardo, B. S., V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott (1999) Electrochemical principles for active control of liquids on submillimeter scales. Science 283: 57-60 https://doi.org/10.1126/science.283.5398.57
  6. Unger, M. A., H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288: 113- 116 https://doi.org/10.1126/science.288.5463.113
  7. Handique, K., D. T. Burke, C. H. Mastrangelo, and M. A. Burns (2001) On-chip thermopneumatic pressure for discrete drop pumping. 73: 1831-1838 https://doi.org/10.1021/ac000711f
  8. Terray, A., J. Oakey, and D. W. Marr (2002) Microfluidic control using colloidal devices. 296: 1841-1844 https://doi.org/10.1126/science.1072133
  9. Zhao, B., J. S. Moore, and D. J. Beebe (2002) Principles of surface-directed liquid flow in microfluidic channels. Anal. Chem. 74: 4259-4268 https://doi.org/10.1021/ac020269w
  10. Hong, J. W., V. Studer, G. Hang, W. F. Anderson, and S. R. Quake (2004) A nanoliter-scale nucleic acid processor with parallel architecture. Nat. Biotechnol. 22: 435-439 https://doi.org/10.1038/nbt951
  11. Liu, J., C. Hansen, and S. R. Quake (2003) Solving the 'world-to-chip' interface problem with a microfluidic matrix. Anal. Chem. 75: 4718-23 https://doi.org/10.1021/ac0346407
  12. Paik, P., V. K. Pamula, M. G. Pollack, and R. B. Fair (2003) Electrowetting-based droplet mixers for microfluidic systems. Lab Chip 3: 28-33 https://doi.org/10.1039/b210825a
  13. Srinivasan, V., V. K. Pamula, and R. B. Fair (2004) Droplet- based microfluidic lab-on-a-chip for glucose detection. Anal. Chim. Acta 507: 145-150 https://doi.org/10.1016/j.aca.2003.12.030
  14. Cho, S. K., H. J. Moon, and C. J. Kim (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting- based actuation for digital microfluidic circuits. J. Microelectromech. Syst. 12: 70-80 https://doi.org/10.1109/JMEMS.2002.807467
  15. Lee, C. S., S. H. Lee, S. S. Park, Y. K. Kim, and B. G. Kim (2003) Protein patterning on silicon-based surface using background hydrophobic thin film. Biosens. Bioelectron. 18: 437-444 https://doi.org/10.1016/S0956-5663(02)00147-1
  16. Lee, S. H., C. S. Lee, B. G. Kim, and Y. K. Kim (2003) Quantitatively controlled nanoliter liquid manipulation using hydrophobic valving and control of surface wettability. J. Micromech. Microeng. 13: 89-97 https://doi.org/10.1088/0960-1317/13/1/313
  17. Lee, S. H., S. I. Cho, C. S. Lee, B. G. Kim, and Y. K. Kim (2005) Microfluidic chip for biochemical reaction and electrophoretic separation by quantitative volume control. Sens. Actuators B Chem. 110: 164-173 https://doi.org/10.1016/j.snb.2005.01.030
  18. Mrksich, M., C. S. Chen, Y. Xia, L. E. Dike, D. E. Ingber, and G. M. Whitesides (1996) Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold. Proc. Natl. Acad. Sci. USA 93: 10775-10778
  19. Li, B. M. and D. Y. Kwok (2003) A lattice Boltzmann model for electrokinetic microchannel flow of electrolyte solution in the presence of external forces with the Poisson- Boltzmann equation. Int. J. Heat Mass Tran. 46: 4235-4244 https://doi.org/10.1016/S0017-9310(03)00218-7
  20. Park, S. S., H. S. Joo, S. I. Cho, M. S. Kim, Y. K. Kim, and B. G. Kim (2003) Multi-step reactions on microchip platform using nitrocellulose membrane reactor. Biotechnol. Bioprocess Eng. 8: 257-262 https://doi.org/10.1007/BF02942275
  21. Labrousse, H., J. L. Guesdon, J. Ragimbeau, and S. Avrameas (1982) Miniaturization of beta-galactosidase immunoassays using chromogenic and fluorogenic substrates. J. Immunol. Methods 48: 133-147 https://doi.org/10.1016/0022-1759(82)90188-0
  22. Wu, C. F., H. J. Cha, G. Rao, J. J. Valdes, and W. E. Bentley (2000) A green fluorescent protein fusion strategy for monitoring the expression, cellular location, and separation of biologically active organophosphorus hydrolase. Appl. Microbiol. Biotechnol. 54: 78-83 https://doi.org/10.1007/s002539900286
  23. Johnvesly, B., D. G. Kang, S. S. Choi, J. H. Kim, and H. J. Cha (2004) Comparative production of green fluorescent protein under co-expression of bacterial hemoglobin in Escherichia coli W3110 using different culture scales. Biotechnol. Bioprocess Eng. 9: 274-277 https://doi.org/10.1007/BF02942343
  24. Stiege, W. and V. A. Erdmann (1995) The potentials of the in vitro protein biosynthesis system. J. Biotechnol. 41: 81-90 https://doi.org/10.1016/0168-1656(95)00005-B
  25. Ahn, J. H., C. Y. Choi, and D. M. Kim (2005) Effect of energy source on the efficiency of translational termination during cell-free protein synthesis. Biochem. Biophys. Res. Commun. 337: 325-329 https://doi.org/10.1016/j.bbrc.2005.09.061
  26. Kim, D. M., T. Kigawa, C. Y. Choi, and S. Yokoyama (1996) A highly efficient cell-free protein synthesis system from Escherichia coli. Eur. J. Biochem. 239: 881-886 https://doi.org/10.1111/j.1432-1033.1996.0881u.x