Assessment of In Vitro Assay System for Thyroid Hormone Disruptors Using Rat Pituitary GH3 Cells

  • Kim, Hee-Jin (Laboratory of Molecular Toxicology, College of Pharmacy, Pusan National University) ;
  • Park, Hae-Young (Laboratory of Molecular Toxicology, College of Pharmacy, Pusan National University) ;
  • Kim, Jeong-A (Laboratory of Molecular Toxicology, College of Pharmacy, Pusan National University) ;
  • Kang, Il-Hyun (National Institute of Toxicological Research, Korea Food and Drug Administration) ;
  • Kim, Tae-Sung (National Institute of Toxicological Research, Korea Food and Drug Administration) ;
  • Han, Soon-Young (National Institute of Toxicological Research, Korea Food and Drug Administration) ;
  • Kang, Tae-Seok (National Institute of Toxicological Research, Korea Food and Drug Administration) ;
  • Park, Kui-Lea (National Institute of Toxicological Research, Korea Food and Drug Administration) ;
  • Kim, Hyung-Sik (Laboratory of Molecular Toxicology, College of Pharmacy, Pusan National University)
  • Published : 2006.12.30

Abstract

The development of in vitro assays has been recommended to screening and testing the potential endocrine disruptors (EDs). These assay systems focus only on identifying the estrogenic or antiestrogenic activity of EDs, whereas a few studies have been carried out to screen the thyroid hormone (TH) disruptors. The aim of this study was to evaluate a test system to detect TH disruptors using rat pituitary tumor $GH_3$ cells. The test system is based on the TH-dependent increase in growth rate. As expected, L-3,5,3-triiodothyronine ($(T_3)$ markedly induced a morphological change in $GH_3$ cells from flattened fibroblastic types to rounded or spindle-shaped types. $T_3$ stimulated $GH_3$ cell growth in a dose-dependent manner with the maximum growth-stimulating effect being observed at a concentration $1{\times}10^9M$. In addition, $T_3$ increased the release of growth hormone and prolactin into the medium of the $GH_3$ cells culture. Using this assay system, the TH-disrupting activities of bisphenol A (BPA) and its related compounds were examined. BPA, dimethy/bisphenol A (DMBPA), and TCI-EP significantly enhanced the growth of $GH_3$ cells in the range of $1{\times}10^{-5}M\;to\;1{\times}10^{-6}M$ concentrations. In conclusion, this in vitro assay system might be useful for identifying potential TH disruptors. However, this method will require further evaluation and standardization before it can be used as a broad-based screening tool.

Keywords

References

  1. Andersen, H.R., Vinggaard, A.M., Rasmussen, T.H., Gjermandsen I.M. and Bonefeld-Jorgensen, E.C. (2002): Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro. Toxicol. Appl. Pharmacol., 179, 1-12 https://doi.org/10.1006/taap.2001.9347
  2. Bernal, J., Guadano-Ferraz, A. and Morte, B. (2003): Perspectives in the study of thyroid hormone action on brain deve lopment and function. Thyroid, 13, 1005-1012 https://doi.org/10.1089/105072503770867174
  3. Bigsby, R., Chapin, R.E., Daston, G.P., Davis, B.J., Gorski, J., Gray, L.E., Howdeshell, K.L., Zoeller, R.T. and vom Saal, F.S. (2003): Evaluating the effects of endocrine disruptors on endocrine function during development. Environ. Health Perspect., 107, 613-618
  4. Brouwer, A.V.D., Berg, K.J., Blaner W.S. and Goodman, D.S. (1996): Transthyretin (prealbumin) binding of PCBs, a model for the mechanism of interference with vitamin A and thyroid hormone metabolism. Chemosphere, 15, 1699-1706
  5. Brucker-Davis, F. (1998): Effects of environmental synthetic chemicals on thyroid function. Thyroid, 8, 827-856 https://doi.org/10.1089/thy.1998.8.827
  6. Colborn, T. (2002): Clues from wildlife to create an assay for thyroid system disruption. Environ. Health Perspect., 110, 363-367 https://doi.org/10.1289/ehp.02110363
  7. Darnerud, P.O. (2003): Toxic effects of brominated flame retardants in man and in wildlife. Environ. Int., 29, 841-853 https://doi.org/10.1016/S0160-4120(03)00107-7
  8. Gray, L.E. Jr. (1998): Xenoendocrine disrupters: laboratory studies on male reproductive effects. Toxicol. Lett., 102-103, 331-335
  9. Gray, L.E. Jr. and Ostby, J. (1998): Effects of pesticides and toxic substances on behavioral and morphological reproductive development: endocrine versus nonendocrine mechanisms. Toxicol Ind. Health, 14, 159-184 https://doi.org/10.1177/074823379801400111
  10. Gauger, K.J., Kato, Y., Haraguchi, K., Lehmler, H.J., Robertson, L.W., Bansal R. and Zoeller, R.T. (2004): Polychlorinated biphenyls (PCBs) exert thyroid hormone-like effects in the fetal rat brain but do not bind to thyroid hormone receptors. Environ. Health Perspect., 112, 516-523 https://doi.org/10.1289/ehp.6672
  11. Gutleb, A.C., Meerts, I.A., Bergsma, J.H. Schriks, M. and Murk, A.J. (2005): T-Screen as a tool to identify thyroid hormone receptor active compounds. Environ. Toxicol. Pharmacol., 19, 231-238 https://doi.org/10.1016/j.etap.2004.06.003
  12. Henneman, G. (1999): Thyroid hormone metabolism, Marcel Dekker, Inc., New York, pp. 503-533
  13. Hinkle, P.M. and Kinsella, P.A. (1986): Thyroid hormone induction of an autocrine growth factor secreted by pituitary tumor cells. Science, 234, 1549-1552 https://doi.org/10.1126/science.3097825
  14. Hohenwarter, O., Waltenberger, A. and Katinger, H. (1996): An in vitro test system for thyroid hormone action. Anal. Biochem., 234, 56-59 https://doi.org/10.1006/abio.1996.0049
  15. Iwasaki, T., Miyazaki, W., Takeshita, A., Kuroda, Y. and Koibuchi, N. (2002): Polychlorinated biphenyls suppress thyroid hormone-induced transactivation. Biochem. Biophys. Res. Commun., 299, 384-388 https://doi.org/10.1016/S0006-291X(02)02659-1
  16. Kelce, W.R. and Wilson, E.M. (1997): Environmental antiandrogens: developmental effects, molecular mechanisms, and clinical implications. J. Mol. Med., 75, 198-207 https://doi.org/10.1007/s001090050104
  17. Kitamura, S., Jinno, N., Ohta, S., Kuroki, H. and Fujimoto, N. (2002): Thyroid hormonal activity of the flame retardants tetrabromobisphenol A and tetrachlorobisphenol A. Biochem. Biophys. Res. Commun., 293, 554-559 https://doi.org/10.1016/S0006-291X(02)00262-0
  18. Kitamura, S., Kato, T., Iida, M., Jinno, N., Suzuki, T., Ohta, S., Fujimoto, N., Hanada, H., Kashiwagi, K. and Kashiwagi, A. (2005): Anti-thyroid hormonal activity of tetrabromobisphenol A, a flame retardant, and related compounds: affinity to the mammalian thyroid hormone receptor, and effect on tadpole metamorphosis. Life Sci., 76, 1589-1601 https://doi.org/10.1016/j.lfs.2004.08.030
  19. Lans, M.C., Spiertz, C., Brouwer, A. and Koeman, J.H. (1994): Different competition of thyroxine binding to transthyretin and thyroxine-binding globulin by hydroxy-PCBs, PCDDs and PCDFs. Eur. J. Pharmacol., 270, 129-136
  20. Legrand, J. (1986): Thyroid hormone effects on growth and development. Thyroid Hormone Metabolism, Marcel Dekker, Inc., New York, pp. 503-534
  21. Leung, H.W., Paustenbach, D.J., Murray, F.J. and Andersen, M.E. (1990): A physiological pharmacokinetic description of the tissue distribution and enzyme-inducing properties of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the rat. Toxicol. Appl. Pharmacol., 103, 399-410 https://doi.org/10.1016/0041-008X(90)90313-J
  22. Meerts, I.A., van Zanden, J.J., Luijks, E.A., van Leeuwen-Bol, I., Marsh, G., Jakobsson, E., Bergman, A. and Brouwer, A. (2000): Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicol. Sci., 56, 95-104 https://doi.org/10.1093/toxsci/56.1.95
  23. Miyazaki, W., Iwasaki, T., Takeshita, A., Kuroda, Y. and Koibuchi, N. (2004): Polychlorinated biphenyls suppress thyroid hormone receptor-mediated transcription through a novel mechanism. J. Biol. Chem., 279, 18195-18202 https://doi.org/10.1074/jbc.M310531200
  24. Moriyama, K., Tagami, T., Akamizu, T., Usui, T., Saijo, M., Kanamoto, N., Hataya, Y., Shimatsu, A., Kuzuya, H. and Nakao, K. (2002): Thyroid hormone action is disrupted by bisphenol A as an antagonist. J. Clin. Endocrinol. Metab., 87, 5185–5190
  25. O'Connor, J.C., Cook, J.C., Marty, M.S., Davis, L.G., Kaplan, A.M. and Carney, E.W. (2002): Evaluation of Tier I screening approaches for detecting endocrine-active compounds (EACs). Crit. Rev. Toxicol., 32, 521-549 https://doi.org/10.1080/20024091064309
  26. O'Connor, J.C., Davis, L.G., Frame, S.R. and Cook, J.C. (2000): Evaluation of a Tier I screening battery for detecting endocrine-active compounds (EACs) using the positive controls testosterone, coumestrol, progesterone, and RU486. Toxicol. Sci., 54, 338-354 https://doi.org/10.1093/toxsci/54.2.338
  27. Oppenheimer, J.H. and Schwartz, H.L. (1997): Molecular basis of thyroid hormone-dependent brain development. Endocr. Rev., 18, 462-475 https://doi.org/10.1210/er.18.4.462
  28. Porterfield, S.P. (2000): Thyroidal dysfunction and environmental chemicals-potential impact on brain development. Environ. Health Perspect., 108, 433-438 https://doi.org/10.2307/3454533
  29. Samuels, H.H., Forman, B.M., Horowitz, Z.D. and Ye, Z.S. (1988): Regulation of gene expression by thyroid hormone. J. Clin. Invest., 81, 957-967 https://doi.org/10.1172/JCI113449
  30. Vos, J.G., Dybing, E., Greim, H.A., Ladefoged, O., Lambre, C., Tarazona, J.V., Brandt, I. and Vethaak, A.D. (2000): Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation. Crit. Rev. Toxicol., 30, 71-133 https://doi.org/10.1080/10408440091159176
  31. Zhang, J. and Lazar, M.A. (2000): The mechanism of action of thyroid hormones. Annu. Rev. Physiol., 62, 439-466 https://doi.org/10.1146/annurev.physiol.62.1.439
  32. Zoeller, R.T. Bansal, R. and Parris, C. (2004): Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine and alters RC3/neurogranin expression in the developing rat brain. Endocrinology, 146, 607-612 https://doi.org/10.1210/en.2004-1018
  33. Zoeller, T.R., Dowling, A.L., Herzig, C.T., Iannacone, E.A., Gauger, K.J. and Bansal, R. (2002): Thyroid hormone, brain development, and the environment. Environ. Health Perspect., 110, 355-361 https://doi.org/10.1289/ehp.02110355