Studies on Physical Properties of Pork Frozen by Various High Pressure Freezing Process

초고압 동결 처리 방법에 따른 돈육의 물리적 특성에 관한 연구

  • Ko, Se-Hee (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Hong, Geun-Pyo (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Park, Sung-Hee (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Choi, Mi-Jung (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Min, Sang-Gi (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
  • 고세희 (건국대학교 축산식품생물공학) ;
  • 홍근표 (건국대학교 축산식품생물공학) ;
  • 박성희 (건국대학교 축산식품생물공학) ;
  • 최미정 (건국대학교 축산식품생물공학) ;
  • 민상기 (건국대학교 축산식품생물공학)
  • Published : 2006.12.31

Abstract

This study was carried out to investigate the effect of various high pressure freezing treatments on the physical properties of pork To compare the effect of freezing on meat quality, atmospheric freezing (AF), pressure and freezing (PF), pressure shift freezing (USF) and pressure assisted freezing (PAF) were conducted at pressure of 100 MPa. Water binding properties, shear force and colour were measured as physical properties of pork PAF showed shorter phase transition time than PSF. Although significant increase (p<0.05) in water binding properties was found only at PAF, meat frozen under hydrostatic pressure environment showed improved water binding properties. However, all high pressure freezing treatment caused significantly increased shear force (p<0.05), especially at PF treatment. In color, all high pressure freezing treatments showed significantly higher color parameters (p<0.05) than AF, whilst no significant differences among high pressure freezing treatments were found (p>0.05). Therefore the result indicated that applied hydrostatic pressure improved functional properties of pork with increasing freezing rate and PAF had more potential benefit than PSF at mild pressure range.

본 실험은 초고압 동결 처리 방법에 의한 돈육의 특성을 대기압 동결 처리와 비교하기 위하여 시행되었다. 본 실험의 결과에 의하면, PSF은 높은 압력 범위에서는 효과적인 잠열의 제거에 기인하여 조직 내 작고 균일한 얼음 결정을 형성함으로써 식품의 품질을 향상시킬 수 있지만, 100 MPa의 mild pressure 범위 조건에서는 그 효과가 미약하거나 오히려 식품에 악영향을 나타낼 수 있었다. 반면에 높은 압력 범위의 PAF은 돈육의 연도 증가 및 심한 변색에 기인하여 육질을 저하시킬 수 있었지만, 본 실험에서 사용한 압력 범위에서는 잠열의 감소에 의하여 PSF보다 따른 동결이 가능하여 효과적인 동결 처리 방법으로 판단되었고, 결국 초고압 동결처리는 압력의 범위에 따라 응용 방법을 적정하게 사용함으로서 식품의 품질을 향상시킬 수 있으리라 판단된다.

Keywords

References

  1. AOAC (1990) Official methods of analysis. 15th ed., Association of Official Analytical Chemists, Washington DC
  2. Carlez, A., Veciana-Nogues, T., and Cheftel, J. C. (1995) Changes in colour and myoglobin of minced beef meat due to high pressure processing. Lebensm. -Wiss. u. -Technol. 28, 528-538 https://doi.org/10.1006/fstl.1995.0088
  3. Cheah, P. B. and Ledward, D. A. (1996) Inhibition of metmyoglobin formation in fresh beef by pressure treatment. Meat Sci. 45, 411-418 https://doi.org/10.1016/S0309-1740(96)00112-X
  4. Cheftel, J. C. (1995) Review: high pressure, microbial inactivation and food preservation. Food Sci. Technol. Intl. 1, 75-90 https://doi.org/10.1177/108201329500100203
  5. Chevalier, D., Sentissi, M., Havet, M., and Le Bail, A. (2000) Comparison of air-blast and pressure shift freezing on norway lobster quality. J. Food Sci. 65, 329-333 https://doi.org/10.1111/j.1365-2621.2000.tb16002.x
  6. Chourot, J. M., Boillereaux, L., Havet, M., and Le Bail, A. (1997) Numerical modeling of high pressure thawing: Application to water thawing. J. Food Eng. 34, 63-75 https://doi.org/10.1016/S0260-8774(97)00067-8
  7. Fernandez, P. P., Otero, L., Guignon, B., and Sanz, P. D. (2006) High-pressure shift freezing versus high-pressure assisted freezing: Effects on the microstructure of a food model. Food Hydrocolloid 20, 510-522 https://doi.org/10.1016/j.foodhyd.2005.04.004
  8. Fernandez-Martin, F., Otero, L., Sol as, M. T., and Sanz, P. D. (2000) Protein denaturation and structural damage during high-pres sure-shift freezing of porcine and bovine muscle. J. Food Sci. 65, 1002-1008 https://doi.org/10.1111/j.1365-2621.2000.tb09407.x
  9. Hong, G. P., Lee, S., and Min, S. G. (2003) Studies on physico-chemical properties of spreadable liver sausage during storage period. Kor. J. Food Sci. Ani. Resour. 23, 56-62
  10. Hong, G. P., Park, S. H., Kim, J. Y., Lee, S. K., and Min, S. G. (2005) Effects of time-dependent high pressure treatment on physico-chemical properties of pork. Food Sci. Biotechnol. 14, 808-812
  11. Hong, G. P., Park, S. H., Kim, J. Y., and Min, S. G. (2006a) The effects of high pressure and various binders on the physico-chemical properties of restructured pork meat. Asian-Aust. J. Anim. Sci. 19, 1484-1489
  12. Hong, G. P., Park, S. H., Kim, J. Y., Ko, S. H., and Min, S. G. (2006b) Effects of salt, $glucono-{\gamma}-lactone$ and high pressure treatment on physico-chemical properties of restructured pork. Kor. J. Food Sci. Ani. Resour. 26, 204-211
  13. Hong, G. P., Park, S. H., Ko, S. H., and Min, S. G. (2006c) Effects of pressure assisted freezing on physicochemical properties of pork. Korean J. Food Sci. Technol. In printing
  14. Ikeuchi, Y., Tanji, H., Kim, K., and Suzuki, A. (1992) Mechanism of heat-induced gelation of pressurized actomyosin: Pressure-induced changes in actin and myosin in actomyosin. J. Agric. Food Chem. 40, 1756-1761 https://doi.org/10.1021/jf00022a006
  15. Jung, S., Ghoul, M., and De Lamballerie-Anton, M. (2003) Influence of high pressure on the color and microbial quality of beef meat. Lebensm. -Wiss. u. -Technol. 36, 625-631 https://doi.org/10.1016/S0023-6438(03)00082-3
  16. Knorr, D., Schlueter, O., and Heinz, V. (1998) Impact of high hydrostatic pressure on phase transitions of foods. Food Technol. 52, 42-45
  17. Lakshmanan, R., Miskin, D., and Piggott, J. R. (2005) Quality of vacuum packed cold-smoked salmon during refrigerated storage as affected by high-pressure processing. J. Sci. Food Agric. 85, 655-661 https://doi.org/10.1002/jsfa.1972
  18. LeBail, A., Chevalier, D., Mussa, D. M., and Ghoul, M. (2002) High pressure freezing and thawing of foods: a review. Int. J. Refrig. 25, 504-513 https://doi.org/10.1016/S0140-7007(01)00030-5
  19. Macfarlane, J. J., McKenzie, I. J., Turner, R. H., and Jones, P. N. (1981) Pressure treatment of meat: Effects on thermal transitions and shear values. Meat Sci. 5, 307-317 https://doi.org/10.1016/0309-1740(81)90020-6
  20. Martine, M. N., Otero, L., Sanz, P. D., and Zaritzky, N. E. (1998) Size and location of ice crystals in pork frozen by high-pressure-assisted freezing as compared to classical methods. Meat Sci. 50, 303-313 https://doi.org/10.1016/S0309-1740(98)00038-2
  21. Molina-Garcia, A. D., Otero, L., Martino, M. N., Zaritzky, N. E., Arabas, J., Szczepek, J., and Sanz, P. D. (2004) Ice VI freezing of meat: supercooling and ultrastructural studies. Meat Sci. 66, 709-718 https://doi.org/10.1016/j.meatsci.2003.07.003
  22. Otero, L. and Sanz, P. D. (2006) High-pressure-shift freezing: Main factors implied in the phase transition time. J. Food Eng. 72, 354-363 https://doi.org/10.1016/j.jfoodeng.2004.12.015
  23. Park, S. H., Ryu, H. S., Hong, G. P., and Min, S. G. (2006) Physical properties of frozen pork thawed by high pressure assisted thawing process. Food Sci. Technol. Intl. 12, 347-352 https://doi.org/10.1177/1082013206068037
  24. Schluter, O., George, S., Heinz, V., and Knorr, D. (1998) Phase transitions in model foods induced by pressure-assisted freezing and pressure-assisted thawing. Proceed. IIR Int. Conf. Sofia, Bulgarie, pp. 23-26
  25. Zhu, S., Le Bail, A., Ramaswamy, H. S., and Chapleau, N. (2004) Characterization of ice crystals in pork muscle formed by pressure-shift freezing as compared with classical freezing methods. J. Food Sci. 69, 190-197 https://doi.org/10.1111/j.1365-2621.2004.tb06346.x