Screening of New Mediators for Lignin Degradation Based on Their Electrochemical Properties and Interactions with Fungal Laccase

  • Published : 2006.12.30

Abstract

This study was performed to evaluate extensive electrochemical characteristics of 23 commercially available mediators for laccase. Electrochemical properties, interactions with laccases, and ability to degrade lignin were compared for selected mediators. Among them, NNDS has very similar electrochemical properties in terms of reversibility and redox potential (about 470 mV vs. Ag/AgCl at pH=7) compared to ABTS which is a well-known mediator. Specific activity of purified laccase from Cerrena unicolor was determined by both 2,2'-azino-bis-(3-ethylbenz-thiazoline-6-sulfonic acid) (ABTS) and 1-nitroso-2-naphthol -3,6-disulfonic acid (NNDS). The specific activity of the laccase was 23.2 units/mg with ABTS and 21.2 units/mg with NNDS. The electron exchange rate for NNDS with laccase was very similar to that for ABTS, which meant that NNDS had similar mediating capability to ABTS. Determining methanol concentration after reacting with laccase compared to lignin degradation capabilities of both ARTS and NNDS. ARTS or NNDS alone cannot degrade lignin, but in the presence of laccase enhanced the rate of lignin degradation. ABTS showed better activity in the beginning, and the reaction rate of NNDS with lignin was about a half of that of ABTS at 10 minute, but the final concentration of methanol produced in 1 hour was very similar each other. The reason for similar methanol concentration for both ABTS and NNDS can be interpreted as the initial activity of ABTS was better than that of NNDS, but ABTS would be inhibited laccase activity more during the incubation.

Keywords

References

  1. Solomon, E.I., Sundaram, U.M. and Machonkin, T.E. Multicopper oxidizes and oxygenases. Chem. Rev. 96: 2563-2605 (1996) https://doi.org/10.1021/cr950046o
  2. Bao, W., Fukushima, Y. Jensen, Jr. K.A., Noen, M.A. and Hammel, K.E. Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal Mn-peroxidase. FEBS Letter 354: 297-300 (1994) https://doi.org/10.1016/0014-5793(94)01146-X
  3. Leonowicz, A., Cho, Nam-Seok, W. Wasilewska, M., Rogalski, J. and Luterek, J. Enzymes of white-rot fungi cooperate in biodeterioration of lignin barrier. Mokchae Konghak 25(2):1-20 (1997)
  4. Leonowicz, A., Luterek, J., W.-Wasilewska, M., Matuszewska, A., Hoftichter, M., Ziegenhagen, D., Rogalski, J. and Cho, Nam-Seok. The role of fungal laccase in biodegradation of Lignin. J. Korea Tappi 31(5):1-11(1999)
  5. Leonowicz, A., Matuszewska, A., Luterek, J., Ziegenhagen, D., Wojtas-Wasilewska, M., Cho, Nam-Seok, Hofrichter, M. and Rogalski, J.Biodegradation of lignin by white-rot fungi. Fungal Genetics and Biology 27: 175-185(1999) https://doi.org/10.1006/fgbi.1999.1150
  6. Leonowicz, A., Rogalski, J., Malarczyk, E., Grzywnowicz, K., Ginalska, G., Lobarzewski, J., Ohga, S., Pashenova, N., Lee S.S. and Cho, Nam-Seok. Demethoxylation of milled wood lignin and lignin related compounds by laccase from white-rot fungus, Cerrena unicolor. Mokchae Konghak 28(4):29-40 (2000)
  7. Leonowicz, A., Cho, Nam-Seok, Luterek, J., Wilkolazka, A., Wojtas-Wasilewska, M., Matuszewska, A., Hofrichter, M., Wesenberg, D. and Rogalski, J. Fungal laccase: properties and activity on lignin. J. Basic Microbiol. 41(3-4):185-227 (2001) https://doi.org/10.1002/1521-4028(200103)41:1<3::AID-JOBM3>3.0.CO;2-E
  8. Leonowicz, A., Gianfreda, L., W. Wasilewska, M., Rogalski, J., Luterek, J., Malarczyk, E., Dawidowicz, A., Fink-Boots, M., Ginalska, G. and Cho, Nam-Seok. Purification of Cerrena unicolor extracellular laccase by means of affinity chromatography. J. Korea Tappi. 29(4):7-17(1997)
  9. Leonowicz, A., Gianfreda, L., W. Wasilewska, M., Rogalski, J., Luterek, J., Malarczyk, E., Dawidowicz, A., Fink-Boots, M., Ginalska, G., Staszczak, M. and Cho, Nam-Seok. Appearance of laccase in wood-rotting fungi and its inducibility' .Mokchae Konghak. 25(3):29-36 (1997)
  10. Kim, Yousung, Cho, Nam-Seok, Eom, Tae-Jin and Shin, Woonsup. Purification and characterization from Cerrena unicolor and its reactivity in lignin degradation. Bull. Korean Chem. Soc. 23(7):985-989 (2002) https://doi.org/10.5012/bkcs.2002.23.7.985
  11. Bollag, J.M. and Leonowicz, A. Comparative studies of extracellular fungal laccases. Appl. Environ.Microbiol. 48: 849-854 (1984)
  12. Leonowicz, A., Szklarz, G., and Wojtas-Wasilewska, M. The effect of fungal laccase on fractionated lignosulfonates. Phytochemistry 24: 393-396(1985) https://doi.org/10.1016/S0031-9422(00)80734-7
  13. Bourbonnais, R. and Paice, M.G. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett. 267: 99-102(1990) https://doi.org/10.1016/0014-5793(90)80298-W
  14. Leonowicz, A., Matuszewska, A., Luterek, J., Ziegenhagen, D., Wojtas-Wasilewska, M, Hofrichter, M. Rogalski, J. and Cho, Nam-Seok. Effect of superoxide dismutase and low molecular mediators on Lignin Degradation. Mokchae Konghak. 27(4):1-14 (1999)
  15. Leonowicz A., J. Rogalski, M. Jaszek, J. Luterek, M.W. Wasilewska, E. Malarczyk, G. Ginalska, M.F. Boots and Nam-Seok Cho. Cooperation of fungal laccases and glucose 1-oxidase in transformation of bjorkman lignin and some phenolic compounds. Holzforschung 53:376-380(1999) https://doi.org/10.1515/HF.1999.062
  16. Cho, Nam-Seok, Rogalski, J., Jaszek, M., Luterek, J., Wasilewska, M.W., Malarczyk, E., Boots, M.F. and Leonowicz, A. Effect of coniferyl alcohol addition on removal of chlorophenols from water effluents by fungal laccase, J. Wood Sci. 45(2): 174-178 (1999) https://doi.org/10.1007/BF01192337
  17. Cho, Nam-Seok, Shin, Woonsup, Jeong, Seon-Hwa and Leonowicz, A. Degradation of lignosulfonates by fungal laccase with low molecular mediators. Bulletin Kor. Chem. Soc. 25(10): 1551-1554 (2004) https://doi.org/10.5012/bkcs.2004.25.10.1551
  18. Cho, Nam-Seok, Choi, Tae-Ho, Shin, Woonsup and Leonowicz, A. Role of fungal Laccase and Low Molecular Mediators on Decolorization of Aromatic Dyes in Paper Mill Effluents. J. Tianjin Univ. Sci. Technol. 19. Supp.2 : 148-155(2004)
  19. Szklarz, G. and Leonowicz, A. Cooperation between fungal laccase and glucose oxidase in the degradation of lignin derivatives. Phytochemistry 25: 2537-2539 (1986) https://doi.org/10.1016/S0031-9422(00)84503-3
  20. Galliano, H., Gas, G., Seris, J.L. and Boudet, A.M. Lignin degradation by Rigidosporus lignosus involves synergistic action of the oxidizing enzymes, Mn-peroxidase and laccase. Enzyme Microb. Technol. 13: 478-482(1991) https://doi.org/10.1016/0141-0229(91)90005-U
  21. Marzullo, L., Cannio, R., Giardina, P., Santini, M.T. and Sannia, G. Veratryl alcohol oxidase from Pleurotus ostreatus participates in lignin biodegradation and prevents polymerization of laccase- oxidized substrates. J. Biol. Chem. 270: 3823-3827(1995) https://doi.org/10.1074/jbc.270.8.3823
  22. Bourbonnais, R. and Paice, M.G. Demethylative delignification of kraft pulp by Trametes versicolor laccase in the presence of ABTS. Appl. Microbiol.Biotechnol. 36: 823-827(1992)
  23. Bourbonnais, R., Paice, M.G., Reid, I.D., Lanthier, P. and Yaguchi, M. Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator, ABTS, in kraft lignin depolymerization. Appl.Environ. Microbiol. 61: 1876-1880(1995)
  24. Bourbonnais, R. and Paice, M.G. Enzymatic delignification of kraft pulp using laccase and a mediator. Tappi J. 1996, 79, 199-204(1996)
  25. Bourbonnais, R., Leech, D. and Paice, M.G. Electrochemical analysis of the interaction of laccase and mediators with lignin. Biochim. Biophys. Acta 1379: 381-390(1998) https://doi.org/10.1016/S0304-4165(97)00117-7
  26. Call, H.P. Process for modifying, breaking down or bleaching lignin, materials containing lignin or like substrates. PCT, World Patent. WO 94/29510 (1994)
  27. Call, H.P. and Mucke, I.J. History, overview and applications of mediated ligninolytic systems, especially laccase-mediator-systems (Lignozyme process). Biotechnol. 53: 163-202(1997) https://doi.org/10.1016/S0168-1656(97)01683-0
  28. Eggert, C., Temp, U., Dean, J.F.D. and Eriksson, K.-E.L. A fungal metabolite mediates oxidation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett. 391: 144-148(1996) https://doi.org/10.1016/0014-5793(96)00719-3
  29. Eggert, C., Temp, U. and Eriksson, K.-E.L. Laccase is essential for lignin degradation by the white-rot fungus, Pycnoporus cinnabarinus. FEBS Lett. 407: 89-92(1997) https://doi.org/10.1016/S0014-5793(97)00301-3
  30. Li, K., Xu, F. and Eriksson, K.-E. L. Comparison of fungal laccases and redox mediators in oxidation of a non-phenolic lignin model compound. Appl. Environ. Microbiol. 65: 2654-2660(1999)
  31. Poppius-Levlin, K., Wang, W., Tamminen, T., Hortling, B., Viikari, L. and Niku-Paavola, M.-L. Biobleaching of chemical pulps by laccase-mediator systems. J. Pulp Pap. Sci. 25: 90-94(1999)
  32. Majcherczyk, A., Johannes, C. and Huttermann, A. Oxidation of aromatic alcohols by laccase from Trametes versicolor mediates by the ABTS cation radicals and dication. Appl. Microbiol. Biotechnol. 66: 524-528(1999)
  33. Bourbonnais, R., Paice, M.G., Freiermuth, B., Bodie, E. and Borneman, S. Reactivities of various mediators and laccases with kraft pulp and lignin model compounds. Appl. Environ. Microbiol. 63: 4627- 4632(1997)
  34. Bourbonnais, R., Paice, M.G., Leech, D. and Freiermuth, B. Reactivity and mechanism of laccase mediators for pulp delignification. In: TAPPI Proceedings, Biological Sciences Symposium, pp.335-338(1997)