DOI QR코드

DOI QR Code

Simulation of Flow field and Water exchange Change on the Redevelopment of Busan North Port

부산북항 재개발에 따른 유동장 및 해수교환 변화 모의

  • 오동훈 (한국해양대학교 토목환경공학과) ;
  • 이중우 (한국해양대학교 건설환경공학부) ;
  • 금동호 (부산항만공사 건설사업부) ;
  • 전성환 (한국해양대학교 토목환경공학과) ;
  • 김강민 (세일종합기술공사 기술연구소)
  • Published : 2006.12.31

Abstract

In connection with redevelopment of Busan North Port, there has been lots of studies and efforts for the development of superannuated North general piers into a center of marine tourism and waterfront for the citizens of Busan. Recently it has moved to the stage of execution, after several trials to find concrete solutions. On the other hand, the change of flow field and tidal exchange cuased by redevelopment is one of the important investigation subjects. This study deals with the change of flow field and water exchange after redevelopment using numerical simulation technique, based on the general data which were collected and analyzed. As a result of simulation, the speed of tidal currents are tended to decrease near the North and inner-port and increase at the main waterway. Furthermore, the tidal exchange had a tendency to be small both before and after redevelopment by about 77% in a quasi steady state, which is about 15 days after.

부산항(북항) 재개발사업은 노후화된 북항 일반부두를 해양관광의 중심지역 그리고 부산시민을 위한 친수공간으로 개발하기 위해 그동안 많은 연구와 노력이 진행되어 왔으며, 현재 구체적인 방안이 모색되는 실행단계로 진입하였다. 한편, 재개발로 인한 유동장 및 해수교환의 변화는 환경적인 측면에서 중요한 검토사항 중 하나이다. 본 연구에서는 북항 재개발에 따른 일반적인 자료를 수집 분석하고, 이를 바탕으로 하여 재개발에 따른 유동장의 변화와 만 내 해수교환을 수치실험으로 검토하였다. 실험결과, 조류속 변화는 북항 및 내항에서 감소가 나타나고 주수로상에서 증가가 나타나고 있다. 해수교환 변화는 15일이 지난 준 정상상태에서 재개발 전후 공히 약 77% 내외에 달하는 것으로 나타났다.

Keywords

References

  1. 中田英明, 卒野敏行(1976), '瀬戸水域におけゐ海域の交流 交換について', 日本水産海洋研究會報. 29. D. 724
  2. Awaji, T., Imasato, N., and Kunishi, H. (1980), 'Tidal exchange through a strait : A numerical experiment using a simple model basin', J. Physical Oceanogr., pp. 1499-1508
  3. Blumberg, A. F., and Mellor, G. L. (1987), 'A desc of a three-dimensional coastal ocean circulation in Three-Dimensional Coastal Model', Vol.4, edited N. Heaps, American Geophysical Union, Washigton, D.C
  4. Cushman, J. H. (1987), 'Development of stochastic differential equations for subsurface hydrology', Hydrol. Hydraul., Springer-Verlag, 1(4), pp. 241-262 https://doi.org/10.1007/BF01543097
  5. Elder, J. W. (1959), 'The dispersion of market fluid in turbulence shear flow' J.Fluid Mech., 5, Part 4, pp. 544-560 https://doi.org/10.1017/S0022112059000374
  6. Jozsa, J. (1989), '2-D particle model for predicting depth-integrated pollutant and surface oil slick transport in rivers', Proc. Int. Conf. on Hydraulic and Environmental Modeling of Coastal, Estuarine and River Waters, Univ. of Bradford, Bradford, Sep., Paper No.30, pp. 332-340
  7. Lee, J. S. and Kim, H. J.(1995), 'Sensitivity analysis of diffusion solutions by random walk method', J. Korean Soc. of Civil Eng., 15(5), pp. 1267-1277
  8. Madala, R. V. and Piacsek, S. A. (1977), 'A semi-implicit numerical model for baroclinic oceans', J. Comput. Phys., 23, pp. 167-178 https://doi.org/10.1016/0021-9991(77)90119-X
  9. Park, D. S., Norris, D. P., and Nelson, A W(l972), 'Tidal exchange at Golden Gate' proc. of ASCE, 98, SA2, pp. 305-323
  10. Simons, T. J.(1974), 'Verification of numerical models of Lake Ontario, Part I. Circulation in spring and early summer', J. Phy. Oceanogr., 4, pp. 507-523 https://doi.org/10.1175/1520-0485(1974)004<0507:VONMOL>2.0.CO;2
  11. Zennetti, P. and AI-Madani, N. (1983), 'Simulation of transformation, buoyancy and removal processes by lagrangian particle method', Proc. 14th NATO/CCMS ITM, Copenhagen, Denmark, pp. 733-744

Cited by

  1. A Study on the Design of Tidal Current Farm in the Bunamgun-do vol.19, pp.1, 2013, https://doi.org/10.7837/kosomes.2013.19.1.085