UV 영역에서 벤젠의 흡수 단면적의 측정

Measurements of the Benzene Absorption Cross Section in the Range of Ultra Violet (UV)

  • 이정순 (한국표준과학원 삶의질 표준부 환경그룹) ;
  • 류성윤 (한국표준과학원 삶의질 표준부 환경그룹) ;
  • 김현호 (한국표준과학원 삶의질 표준부 환경그룹) ;
  • 우진춘 (한국표준과학원 삶의질 표준부 환경그룹) ;
  • 김기복 (한국표준과학원 삶의질 표준부 환경그룹)
  • Lee, J.S. (Environmental Metrology Group, Division of Metrology for Quality Life, Korea Research Institute of Standards and Science (KRISS)) ;
  • Ryu, S.Y. (Environmental Metrology Group, Division of Metrology for Quality Life, Korea Research Institute of Standards and Science (KRISS)) ;
  • Kim, H.H. (Environmental Metrology Group, Division of Metrology for Quality Life, Korea Research Institute of Standards and Science (KRISS)) ;
  • Woo, J.C. (Environmental Metrology Group, Division of Metrology for Quality Life, Korea Research Institute of Standards and Science (KRISS)) ;
  • Kim, K.B. (Environmental Metrology Group, Division of Metrology for Quality Life, Korea Research Institute of Standards and Science (KRISS))
  • 발행 : 2006.12.31

초록

An absolute absorption cross section of benzene was measured with a spectrometer system including a mono-chrometer and a grating in the wavelength region of $240{\sim}280nm$ under the atmospheric pressure and room temperature in the laboratory. A certificated reference benzene gas ($98{\mu}mol/mol$ in $N_2$) was used to measure its absorption cross section. A 710 mm cell with a quartz window and a 150 W Xe arc lamp were employed. The magnitude of absorption cross section of $1.41{\times}10^{-18}cm^2$ was lower than that of the reference spectra ($2.5{\times}10^{-18}cm^2$) of high resolution spectrometer, Total measurement uncertainty was estimated to be 4.0%.

키워드

참고문헌

  1. Etzkorn, T., B. Klotz, S. Soerensen, I.V. Patroescu, I. Barnes, K.H. Becker, and U. Platt (1999) Gas-Phase absorption cross sections of 24 monocyclic aromatic hydrocarbons in the UV and IR spectral ranges, Atmos. Env., 33, 523-540
  2. Kim, K.-H. (2004) Comparison of BTX measurements using a commercial differential optical absorption spectroscopy and an on-line gas chromatography system, Environ. Eng. Sci., 21(2), 181-194 https://doi.org/10.1089/109287504773087354
  3. Kim, K.-H. and M.-Y. Kim (2001) Comparison of an open path differential optical absorption spectroscopy system and a conventional in situ monitoring system on the basis of long term measurements of $SO_2,\;NO_2,\;and\;O_3$, Atmos. Environ., 35, 4059-4072 https://doi.org/10.1016/S1352-2310(01)00216-3
  4. Kim, S.-W., J.-G. Won, K.-H. Park, S.-C. Yoon, C.-S. Hong, Y.-J. Kim, and G.-S. Huh (2001) Monitoring and analysis of air pollutant using differential optical absorption spectroscopy, J. of Kor. Soc. Atmos. Environ., 17(5), 375-385
  5. Lee, J.S., Y. Kim, B.J. Kuk, A. Geyer, and U. Platt (2005a) Simultaneous Measurements of Atmospheric Pollutants and Visibility with a Long-Path DOAS System in Urban Areas, Environmental Monitoring and Assessment, 104, 281-293 https://doi.org/10.1007/s10661-005-1616-6
  6. Lee, C., Y.J. Choi, J.S. Jung, J.S. Lee, K.H. Kim, and Y.J. Kim (2005b) Measurement of atmospheric monoaromatic hydrocarbons using differential optical absorption spectroscopy: Comparison with on-line gas chromatography measurements in urban air, Atmos. Env., 39, 2225-2234 https://doi.org/10.1016/j.atmosenv.2005.01.004
  7. Lee, J.S., B. Kuk, and Y.J. Kim (2002) Development of differential optical absorption spectroscopy (DOAS) system for detection of atmospheric species; $NO_2,\;SO_2,\;and\;O_3$, J. Kor. Phys. Soc., 41(5), 693-698
  8. Platt, U. (1994) Differential Optical Absorption Spectroscopy (DOAS), Air Monitoring by Spectroscopic Techniques: Chemical Analysis Series, ed. Markus W. Sigrist, 127, 27-84
  9. Platt, U., D. Perner, and H.W. Patz (1979) Simultaneous measurement of atmospheric $CH_2O,\;O_3\;and\;NO_2$ by Differential Optical Absorption, J. Geophys. Res., 84, 6329-6335 https://doi.org/10.1029/JC084iC10p06329
  10. Sprague, K.E. and J.A. Joens (1995) $SO_2$ absorption cross section measurements from 320 to 405 nm, J. Quant. Spectrosc. Radiat. Transfer, 53(4), 349-352 https://doi.org/10.1016/0022-4073(95)90011-X
  11. Trost, B., J. Stutz, and U. Platt (1997) UV-absorption cross sections of a series of monocyclic aromatic compounds, Atmos. Env., 31, 3999-4008 https://doi.org/10.1016/S1352-2310(97)00214-8
  12. Vandeale, A.C., C. Hermans, P.C. Simon, M. Catrleer, R. Colin, S. Fally, M.F. Merienne, A. Jenouvrier, and B. Coquart (1998) Measurements of the $NO_2$ absorption cross section from 42000 $cm^{-1}$ to 10,000 $cm^{-1}$ (238$\sim$1,000 nm) at 220 K and 294 K, J. Quant. Spectrosc. Radiat. Transfer, 59(3-5), 171-184 https://doi.org/10.1016/S0022-4073(97)00168-4
  13. Vandeale, A.C., P.C. Simon, J.M. Guilmot, M. Carleer, and R. Colin (1994) $SO_2$ absorption cross section measurement in the UV using the Fourier transform spectrometer, Journal of the Geophysical Research, 99(D12), 25599-26605 https://doi.org/10.1029/94JD02187