The Interaction Potential Functions in an Electrolyte Protein Solution

  • Jee, Nam-Yong (The College of Architecture, Department of Architectural Engineering, Hanyang University) ;
  • Kim, Jae-Jun (The College of Architecture, Department of Architectural Engineering, Hanyang University)
  • Published : 2006.12.31

Abstract

Recent developments in equations of state for molecular fluids have demonstrated the feasibility of using the hard-sphere equation to describe the effects of repulsive forces in simple fluids. By including a suitable term for attractive forces, most conveniently a uniform background potential, the properties of bio-macromolecular interaction can be roughly calculated. However, the choice of the potential used in perturbed hard-sphere chain (PHSC) theory for describing the attractions between macromolecules is rather complicated. For hard-sphere chains, the prediction accuracy from each model strongly depends on the choice of potential function.

Keywords

References

  1. R. Dickman and C. K. Hall, J. Chem. Phys., 85, 4108 (1986) https://doi.org/10.1063/1.450881
  2. K. G. Honnell and C. H. Hall, J. Chem. Phys., 90, 1841 (1989) https://doi.org/10.1063/1.456026
  3. M. S. Wertheim, J. Chem. Phys., 85, 2929 (1985) https://doi.org/10.1063/1.451002
  4. W. G. Chapman, G. Jackson, and K. E. Gubbins, Mol. Phys., 65, 1057 (1988) https://doi.org/10.1080/00268978800101601
  5. W. G. Chapman, K. E. Gubbins, G. Jackson, and M. Radosz, Ind. Eng. Chem. Res., 29, 1709 (1990) https://doi.org/10.1021/ie00104a021
  6. R. A. Curtis, A. Montaser, H. W. Blanch, and J. M. Prausnitz, Biotechnol. Bioeng., 57, 11 (1998) https://doi.org/10.1002/(SICI)1097-0290(19980105)57:1<11::AID-BIT2>3.0.CO;2-Y
  7. J. Wu and J. M. Prausnitz, Fluid Phase Equilib., 165, 139 (1999)
  8. D. E. Kuehner, C. Heyer, C. Rämsch, U. M. Fornefeld, H. W. Blanch, and J. M. Prausnitz, Biophys. J., 73, 3211 (1997) https://doi.org/10.1016/S0006-3495(97)78346-2
  9. J. J. Grigsby, H. W. Blanch, and J. M. Prausnitz, Biophys. Chem., 91, 231 (2001) https://doi.org/10.1016/S0301-4622(01)00173-9
  10. E. J. Park and Y. C. Bae, Biophys. Chem., 109, 169 (2004) https://doi.org/10.1016/j.bpc.2003.11.001
  11. J. A. Barker and D. Henderson, J. Chem. Phys., 47, 4714 (1967) https://doi.org/10.1063/1.1701689
  12. J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys., 54, 5237 (1971) https://doi.org/10.1063/1.1674820
  13. J. Chang and S. I. Sandler, Mol. Phys., 81, 745 (1994) https://doi.org/10.1080/00268979400100501
  14. S. M. Walas, Phase Equilibria in Chemical Engineering, Butterworths, Boston, MA., 1985
  15. I. H. Kim and Y. C. Bae, Fluid Phase Equilib., revised (2004)
  16. B. L. Neal and A. M. Lenhoff, AIChE J., 41, 1010 (1995) https://doi.org/10.1002/aic.690410432
  17. D. Asthagiri and B. L. Neal, Biophys. Chem., 78, 219 (1999) https://doi.org/10.1016/S0301-4622(99)00028-9
  18. B. H. Chang and Y. C. Bae, Biomacromol., 4, 1713 (2003) https://doi.org/10.1021/bm0300406
  19. S. G. Kim and Y. C. Bae, Macromol. Res., 11, 53 (2003) https://doi.org/10.1007/BF03218278
  20. B. H. Chang and Y. C. Bae, Biophys. Chem., 104, 523 (2003) https://doi.org/10.1016/S0301-4622(03)00041-3
  21. F. Rothstein, Differential precipitation of proteins, R. G. Harrion, Ed., Dekker, New York, 1994
  22. M. Muschol and F. Rosenberger, J. Cryst. Growth, 167, 738 (1996) https://doi.org/10.1016/0022-0248(96)00319-3
  23. F. Rosenberger, P. G. Vekilov, M. Muschol, and B. R. Thomas, J. Cryst. Growth, 168, 1 (1996) https://doi.org/10.1016/0022-0248(96)00358-2