Isolation of a Fibrinolytic Bacterium from Cheongkukjang and Characterization of Its Bioactivity

청국장으로부터 Fibrin 분해 세균의 분리 및 이를 이용한 발효 청국장의 생리활성

  • 이동근 (신라대학교 의생명과학대학 제약공학과) ;
  • 김남영 (신라대학교 의생명과학대학 제약공학과) ;
  • 장민경 (신라대학교 의생명과학대학 제약공학과) ;
  • 유병홍 ((주)바이오포트 코리아) ;
  • 김기영 ((주)바이오포트 코리아) ;
  • 김성구 ((주)바이오포트 코리아) ;
  • 정영기 (동아대학교 생명공학과) ;
  • 이상현 (신라대학교 의생명과학대학 제약공학과)
  • Published : 2006.12.28

Abstract

In this study, we have isolated and identified a proteolytic bacterium from conventional Cheongkukjang. We also characterized several bioactivity of Cheongkukjang, which was fermented by an isolated strain. One strain out of about $10^4$ strains obtained from Cheongkukjang showed relatively high proteolytic activity was selected and named as a Bacillus subtilis LSH805 strain. White soy-bean Cheongkukjang possessed less odor and more viscous substance than black soy-bean Cheongkukjang. Cheongkukjang showed fibrinolytic activity, and about 1,500 mg fibrin was degraded after 20 h incubation. Although nitric oxide (NO) assays of soy-bean and Cheongkukjang were almost the same, their activities were significantly higher than that of no treatment. Activity of water fraction of Cheongkukjang was somewhat higher than that of soy-bean. Fibrinolytic and NO assays of Cheongkukjang suggest that Cheongkukjang, which was fermented by an isolated strain may be a useful candidate for natural fibrinolytic and macrophage-stimulating agents.

재래시장에서 시판되는 청국장을 이용하여 단백질 분해활성이 높은 Bacillus subtilis LSH805 균주를 분리 동정하였고, 이 균주를 이용하여 생산된 청국장의 혈전용해활성 및 대식세포주에 대한 NO 생산능 등을 비교하였다. 백태를 이용해 발효된 청국장의 경우 점액성 물질의 길이가 흑태를 이용한 것보다 1.5배 정도 길었으며 발효취가 낮은 청국장을 얻었다. 백태를 이용한 발효 청국장의 혈전분해활성은 배양 후 15시간이 경과한 시점에서 급격한 증가를 보였으며 20시간이 경과한 후에는 약 1,500mg의 분해된 혈전을 얻을 수 있었다. 청국장의 대식세포주의 NO 생산증진은 원료콩에 비해 큰 차이를 나타내지 않았지만 활성을 보이는 분획의 경향변화를 확인할 수 있었다. 본 연구결과로 식품섭취를 통해 혈전증 등을 사전에 예방하거나 개선할 수 있는 건강기능성 식품의 개발이 가능할 것으로 사료된다.

Keywords

References

  1. Amber, I. J., J. B. Hibbs, R. R. Taintor, Z. Vavrin. 1988. Cytokine induce an L-arginine-dependent effector system in nonmacrophage cells. J. Leuko. Biol. 44: 58-65
  2. Anson, M. L. 1939. The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J. Gen. Physiol. 22: 79-85 https://doi.org/10.1085/jgp.22.1.79
  3. Astrup, T. and S. Mullertz. 1952. The fibrin method for estimating of fibrinolytic activity. Arch. Biochem. Biophys. 40: 346-351 https://doi.org/10.1016/0003-9861(52)90121-5
  4. Bartholomew, B. 1984. A rapid method for the assay of nitrate in urine using the nitrate reductase enzyme of Escherichia coli. Food Chem. Toxicol. 22: 541-549 https://doi.org/10.1016/0278-6915(84)90224-2
  5. Chang J. H., Y. Y. Shim, S. H. Kim, K. M. Chee, and S. K. Cha. 2005. Fibrinolytic and immunostimulating activities of Bacillus spp. strains isolated from Chungkuk-jang. Kor. J. Food Sci. Technol. 37: 255-260
  6. Evans, T. G., L. Thai, D. L. Granger, and J. B. Jr. Hibbs. 1993. Effect of in vivo inhibition of nitric oxide production in murine Leishmaniasis. J. Immunol. 151: 907-915
  7. Fujita, M., K. Hong, Y. Ito, R. Fujii, K. Kariya, and S. Nishimuro. 1995. Thrombolytic effect of nattokinase on a chemically induced thrombosis model in rat. Biol. Pharm. Bull. 18: 1387-1391
  8. Green, S. J., M. S. Meltzer, J. B. Hibbs, and C. A. Nacy. 1990. Activated macrophages destroy intracellular Leishmania major amastigtes by an L-arginine-dependent killing mechanism. J. Immunol. 144: 278-283
  9. Hibbs, J. B. Jr., Z. Vavrin, R. R. Taintor, and E. M. Rachlin. 1988. Nitric oxide: A cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun. 157: 87-94 https://doi.org/10.1016/S0006-291X(88)80015-9
  10. Hyun, K. W., J. S. Lee, J. H. Ham, and S. Y. Choi. 2005. Isolation and identification of microorganism with potent fibrinolytic activity from Korean traditional Deonjang. Kor. J. Microbiol. Biotechnol. 33: 24-28
  11. Kim, S. B., D. W. Lee, C. I. Cheigh, E. A. Choe, S. J. Lee, Y. H. Hong, H. J. Choi, and Y. R. Pyun. 2006. Purification and characterization of a fibrinolytic subtilisin-like protease of Bacillus subtilis TP-6 from an Indonesian fermented soybean, Tempeh. J. Ind. Microbiol. Biotechnol. 33: 436-444 https://doi.org/10.1007/s10295-006-0085-4
  12. Kim, S. C., S. H. Lee, and S. J. Wi. 2002. The effects of natto mucilage on the components of serum lipid in rats. J. Kor. Oil Chemists' Soc. 19: 63-67
  13. Kim, S. S., J. H. Lee, Y. S. Ahn, J. H. Kim, and D. K. Kang. 2003. A fibrinolytic enzyme from Bacillus amyloliquefaciens D4-7 isolated from chungkook-jang; It's characterization and influence of additives on thermostability. Kor. J. Microbiol. Biotechnol. 31: 271-276
  14. Kolb, H. and V. Kolb-Bachofen. 1992. Nitric oxide: A pathogenetic factor in autoimmunity. Immunol. Today 13: 157-160 https://doi.org/10.1016/0167-5699(92)90118-Q
  15. Kwon, H. Y., Y. S. Kim, G. S. Kwon, C. S. Kwon, and H. Y. Sohn. 2004. Isolation of immunostimulating strain Bacillus pumilus JB-1 from chungkookjang and fermentaional characteristics of JB-1. Kor. J. Microbiol. Biotechnol. 32: 291-296
  16. Lee, B. Y., D. M. Kim, and K. H. Kim. 1991. Physicochemical properties of viscous substance extracted from chungkookjang. Kor. J. Food Sci. Technol. 23: 599-604
  17. Lee, D. G., M. K. Jang, N. Y. Kim, J. H. Jeon, J. H. Lee, J. H. Lee, S. J. Kim, and S. H. Lee. 2006. Screening and characterization of a novel fibrinolytic metalloproteinase from a metagenomic library. Biotechnol. Lett. in press
  18. Lee, J. O., S. D. Ha, A. J. Kim, C. S. Yuh, I. S. Bang, and S. H. Park. 2005. Industrial application and physiological functions of chonggkukhang. Food Sci. Indus. 38: 69-78
  19. Lee, S. K., S. Heo, D. H. Bae, and K. H. Choi. 1998. Medium optimization for fibrinolytic enzyme production by Bacillus subtilis KCK-7 isolated from korean traditional chungkookjang. Kor. J. Appl. Microibol. Biotechnol. 26: 226-231
  20. Nakajima, N., H. Mihara, and H. Sumi. 1993. Characterization of potent fibrinolytic enzymes in earthworm, Lumbricus rubellus. Biosci. Biotechnol. Biochem. 57: 1726-1730
  21. Nathan, C. F. and J. B. Hibbs. 1991. Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr. Opin. Immunol. 3: 65-70 https://doi.org/10.1016/0952-7915(91)90079-G
  22. Ryu, S. H. 2002. Studies on antioxidative effects and antioxidative components of soybean and chongkukjang. Doctorial thesis, Inje University of Korea, 23-122
  23. Shon, M. Y., S. H. Kwon, S. K. Park, and J. S. Chor. 2001. Changes in chemical components of black bean Chungkukjang added with kiwi and radish during fermentation. Kor. J. Posthavest Sci. Technol. 8: 449-455
  24. Sumi, H., H. Hamada, K. Nakanishi, and H. Hiratani. 1990. Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase. Acta Haematol. 84: 139-143 https://doi.org/10.1159/000205051
  25. Snyder, S. H., D. S. Bredt. 1992. Biological roles of nitric oxide. Scientific Am. May: 68-77
  26. Wang, C. T., B. P. Ji, B. Li, R. Nout, P. L. Li, H. Ji, and L. F. Hong. 2006. Purification and characterization of a fibrinolytic enzyme of Bacillus subtilis DC33, isolated from Chinese traditional Douchi. J. Ind. Microbiol. Biotechnol. 33: 750-758 https://doi.org/10.1007/s10295-006-0111-6
  27. Woo, S. M. J. H. Kwon, and Y. J. Jeong. 2006. Selection and fermentation characteristics of Cheonggukjang strain. Kor. J. Food Preser. 13: 77-82
  28. Yoo, S. M. and C. M. Chang. 1999. Study on the processing adaptability of soybean cultivars for Korean traditional chonggugjang preparation. J. Kor. Soc. Agric. Chem. Biotechnol. 42: 91-98
  29. Yun, G. H., E. T. Lee, and S. D. Kim. 2003. Purification and characterization of a fibrinolytic enzyme produced from Bacillus amyloliquefaciens K42 isolated from Korean soy sauce. Kor. J. Microbiol. Biotechnol. 31: 284-291