Effect of Exopolymers from Aureobasidium pullulans on Formalin-Induced Chronic Paw Inflammation in Mice

  • Kim, Hyeong-Dong (Department of Physical Therapy, College of Health Science, Catholic University) ;
  • Cho, Hyung-Rae (Glucan Corp. Research Institute, Marine Biotechnology) ;
  • Moon, Seung-Bae (Glucan Corp. Research Institute, Marine Biotechnology) ;
  • Shin, Hyun-Dong (Glucan Corp. Research Institute, Marine Biotechnology) ;
  • Yang, Kun-Ju (Glucan Corp. Research Institute, Marine Biotechnology) ;
  • Park, Bok-Ryeon (Glucan Corp. Research Institute, Marine Biotechnology) ;
  • Jang, Hee-Jeong (Glucan Corp. Research Institute, Marine Biotechnology) ;
  • Kim, Lin-Su (Department of Herbal Biotechnology, Daegu Haany University) ;
  • Lee, Hyeung-Sik (Pharmacology & Toxicology Laboratory, Central Research Laboratories, Dong Wha Pharmaceutical Industrial Co., Ltd.)
  • Published : 2006.12.30

Abstract

The effects of the exopolymers of Aureobasidium pullulans SM-2001 containing $\beta$-1,3/1,6-glucan on formalin-induced chronic inflammation were observed. Doses of 62.5, 125, and 250 mg/kg of the exopolymers were orally administered once a day for 10 days to formalin-induced chronic inflammatory mice (0.02 ml of 3.75% formalin was subaponeurotically injected into the left hind paw), and then the bilateral hind-paw thickness and volume were measured daily, while the paw wet-weight, histological profiles, and histomorphometrical analyses were conducted at termination. The results were compared with those for diclofenac, indomethacin, and dexamethasone (intraperitoneally injected) 15 mg/kg-dosed groups. All the animals were sacrificed 10 days after dosing. As a result of the formalin injection, a marked increase in the difference between the intact and formalin-induced paw thickness and volume was detected in the formalin-injected control compared with that in the intact control with time, plus at the time of sacrifice, the difference in the paw wet-weights was also dramatically increased. In a histological and histomorphometrical analysis, severe histological profiles of chronic inflammation were detected in the formalin-injected control with a marked increase in the thickness of the skin of the dorsum pedis. However, these formalin-induced chronic inflammatory changes were significantly and dose-dependently decreased by the exopolymer treatment. In conclusion, the exopolymer treatment inhibited the chronic inflammatory response induced by formalin injection in the mice. However, somewhat low efficacies were detected compared with those for the diclofenac-, indomethacin-, and dexamethasone-treated groups.

Keywords

References

  1. Abdel-Salam, O. M., A. R. Baiuomy, S. El-batran, and M. S. Arbid. 2004. Evaluation of the anti-inflammatory, antinociceptive and gastric effects of Ginkgo biloba in the rat. Pharmacol. Res. 49: 133-142 https://doi.org/10.1016/j.phrs.2003.08.004
  2. Amin, A. R., P. Vyas, M. Attur, J. Leszczynska-Piziak, I. R. Patel, G. Weissmann, and S. B. Abramson. 1995. The mode of action of aspirin-like drugs: Effect on inducible nitric oxide synthase. Proc. Natl. Acad. Sci. USA 92: 7926-7930
  3. Bell, S., V. M. Goldman, B. R. Bistrian, A. H. Arnold, G. Ostroff, and R. A. Forse. 1999. Effect of beta-glucan from oats and yeast on serum lipids. Crit. Rev. Food Sci. Nutr. 39: 189-202 https://doi.org/10.1080/10408399908500493
  4. Chi, Y. M., M. Nakamura, A. Y. Zhao, T. Yoshizawa, W. M. Yan, F. Hashimoto, J. Kinjo, T. Nohara, and S. Sakurada. 2006. Anti-inflammatory activity of 4,4'-dihydroxy-alpha-truxillic acid. Biol. Pharm. Bull. 29: 489-493 https://doi.org/10.1248/bpb.29.489
  5. Czop, J. K. 1986. The role of beta-glucan receptors on blood and tissue leukocytes in phagocytosis and metabolic activation. Pathol. Immunopathol. Res. 5: 286-296 https://doi.org/10.1159/000157022
  6. Di Renzo, L., E. Yefenof, and E. Klein. 1991. The function of human NK cells is enhanced by beta-glucan, a ligand of CR3 (CD11b/CD18). Eur. J. Immunol. 21: 1755-1758 https://doi.org/10.1002/eji.1830210726
  7. Dumka, V. K., S. K. Tandan, V. Raviprakash, and H. C. Tripathi. 1996. Central noradrenergic and cholinergic modulation of formaldehyde-induced pedal inflammation and nociception in rats. Indian J. Physiol. Pharmacol. 40: 41-46
  8. Estrada, A., C. H. Yun, A. Van Kessel, B. Li, S. Hauta, and B. Laarveld. 1997. Immunomodulatory activities of oat betaglucan in vitro and in vivo. Microbiol. Immunol. 41: 991- 998 https://doi.org/10.1111/j.1348-0421.1997.tb01959.x
  9. Gupta, S. K., P. Bansal, P. K. Bhardwaj, J. Jaiswal, and T. Velpandian. 2002. Comparison of analgesic and antiinflammatory activity of meloxicam gel with diclofenac and piroxicam gels in animal models: Pharmacokinetic parameters after topical application. Skin Pharmacol. Appl. Skin Physiol. 15: 105-111 https://doi.org/10.1159/000049397
  10. Habashy, R. R., A. B. Abdel-Naim, A. E. Khalifa, and M. M. Al-Azizi. 2005. Anti-inflammatory effects of jojoba liquid wax in experimental models. Pharmacol. Res. 51: 95-105 https://doi.org/10.1016/j.phrs.2004.04.011
  11. Hosseinzadeh, H. and H. M. Younesi. 2002. Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol. 2: 7-12 https://doi.org/10.1186/1471-2210-2-7
  12. Kenjo, T., S. Kikuchi, and S. Konno. 2002. Cooling decreases fos-immunoreactivity in the rat after formalin injection. Clin. Orthop. Relat. Res. 394: 271-277 https://doi.org/10.1097/00003086-200201000-00032
  13. Krizkova, L., Z. Durackova, J. Sandula, D. Slamenova, V. Sasinkova, M. Sivonova, and J. Krajcovic. 2003. Fungal beta-(1-3)-D-glucan derivatives exhibit high antioxidative and antimutagenic activity in vitro. Anticancer Res. 23: 2751-2756
  14. Lia, A., G. Hallmans, A. S. Sandberg, B. Sundberg, P. Aman, and H. Andersson. 1995. Oat beta-glucan increases bile acid excretion and a fiber-rich barley fraction increases cholesterol excretion in ileostomy subjects. Am. J. Clin. Nutr. 62: 1245- 1251 https://doi.org/10.1093/ajcn/62.6.1245
  15. Liu, F., V. E. Ooi, and S. T. Chang. 1997. Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci. 60: 763-771 https://doi.org/10.1016/S0024-3205(97)00004-0
  16. Perez, R. M., S. Perez, M. A. Zavala, and M. Salazar. Antiinflammatory activity of the bark of Hippocratea excelsa. J. Ethnopharmacol. 47: 85-90
  17. Pillai, A. D., P. D. Rathod, P. X. Franklin, M. Patel, M. Nivsarkar, K. K. Vasu, H. Padh, and V. Sudarsanam. 2003. Novel drug designing approach for dual inhibitors as antiinflammatory agents: Implication of pyridine template. Biochem. Biophys. Res. Commun. 301: 183-186 https://doi.org/10.1016/S0006-291X(02)02996-0
  18. Ramprasath, V. R., P. Shanthi, and P. Sachdanandam. 2006. Immunomodulatory and anti-inflammatory effects of Semecarpus anacardium LINN. Nut milk extract in experimental inflammatory conditions. Biol. Pharm. Bull. 29: 693-700 https://doi.org/10.1248/bpb.29.693
  19. Ross, G. D., V. Vetvicka, J. Yan, Y. Xia, and J. Vetvickova. 1999. Therapeutic intervention with complement and betaglucan in cancer. Immunopharmacology 42: 61-74 https://doi.org/10.1016/S0162-3109(99)00013-2
  20. Sener, G., H. Toklu, F. Ercan, and G. Erkanli. 2005. Protective effect of beta-glucan against oxidative organ injury in a rat model of sepsis. Int. Immunopharmacol. 5: 1387-1396 https://doi.org/10.1016/j.intimp.2005.03.007
  21. Seo, H.-P., J.-M. Kim, H.-D. Shin, T.-K. Kim, H.-J. Chang, B.-R. Park, and J.-W. Lee. 2002. Production of -1,3/1,6- glucan by Aureobasidium pullulans SM-2001. Korean J. Biotechnol. Bioeng. 17: 376-380
  22. Song, H. B., D. C. Park, G. M. Do, S.-L. Hwang, W. K. Lee, H.-S. Kang, B.-R. Park, H.-J. Jang, C.-W. Son, E. K. Park, S.-Y. Kim, and T.-L. Huh. 2006. Effect of exopolymers of Aureobasidium pullulans on improving osteoporosis induced in ovariectomized mice. J. Microbiol. Biotechnol. 16: 37-45
  23. Torres-Lopez, J. E., M. I. Ortiz, G. Castaneda-Hernandez, R. Alonso-Lopez, R. Asomoza-Espinosa, and V. Granados- Soto. 2002. Comparison of the antinociceptive effect of celecoxib, diclofenac and resveratrol in the formalin test. Life Sci. 70: 1669-1676 https://doi.org/10.1016/S0024-3205(02)01491-1
  24. Yashpal, K. and T. J. Coderre. 1998. Influence of formalin concentration on the antinociceptive effects of antiinflammatory drugs in the formalin test in rats: Separate mechanisms underlying the nociceptive effects of low- and high-concentration formalin. Eur. J. Pain 2: 63-68 https://doi.org/10.1016/S1090-3801(98)90047-7